AD-A145 757 A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER 1/3
PRODUCTIVITY AND EFFORT ESTI.‘(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH J D FERNANDEZ MAY 84
UNCLASSIFIED AFIT/CI/NR-84-44D F/G 9/2

: ;m

Joty
== - um"Z
S s pes,

MICROCOPY RESOLUTION TEST CHART
o BUREAY | ANDARDS ~ 1963 -~

W —— M
Y

UNCI ASS
SECURITY CLASSIFICATION OF TwHiS PACE (When D.l.LEnund)‘ . l

REPORT DOCUMENTATION PAGE BEFORE COMPLEFING FORM

. REPORT NUMBER 2. GOVY ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

AFIT/CI/NR 84-44D , A/ & 7

e An*“.: hmas.._lwu.) F The Analvsis OF P (7) / 5. TYPE OF REPORT & PERIOD COVERED
ethodology For The Analysis rogrammer .

And Effort Estimation Within The Framework Of THESL5/DISSERTATION

Software Conversion 6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) . CONTRACT OR GRANT NUMBER(s)

John D. Fernandez

9. PERFORMING ORGANIZATION VAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

AFIT STUDENT AT: Texas A&M University

AD-A145 757

11, CONTROLLING OFFICE ~AME AND ADDRESS 12. REPORT DATE

AFIT/NR 220
WPAFB OH 45433 13. NUMBER OF PAGES
1984
14, MONITORING AGENC ' NAME & ADDRESS(I! dilferent from Controlling Office) 18. SECURITY CLASS. (0! thie report) -
UNCLASS
1Sa. DECL ASSIFICATION/DOWNGRADING
SCHEDULE
16. DISTRIBUTION S ATEMENT (of this Report)
APPROVED FOQR PUBLIC RELEASE; DISTRIBUTION UNLIMITED DTI C
ELECTE

SEP 1 8 1984

17. OISTRIBUT.ON STATEMENT (of the sbslract entered in Block 20, {f different Irom Report)

B

/1 \ A
W oo
N E. WOLAVER
Dean for Research and
Professional Development
&VMXV AFIT, Wright-Patterson AFB]OH

19. KEY WORDS (Continue on reverse efde if necossary and identily by block]umborr)

18. SUPPLEMENTARY NOTES

APPROGVED FOR PUBLIC RELEASE: IAW AFR 190-1/

20. ABSTRACT (Continue aon reverse aide if necossary and identify by block number)

ATTACHED

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Entered)

84 09 13 007 -

0D , FORM 1473 EDITION OF ! NOV §8 1S OBSOLETE UNCLASS

JAN 73

ABSTRACT

A Methodology For The Analysis Of Programmer Productivity And Effort
Estimation Within The Pramework of Software Conversion (May 1984)
John Diego Fernandez, B.A., Texas A&I University;

M.S.E., West Virginia University

- Software conversion is becoming increasingly sigRificant as the
inventory of programs déncreases and as the life cycle of many
applications becomes longer. Although scme work has been done in the
area of software conversion, it has received 1little research
attention since it has only recently become a more frequent
occurrence. This research considered two aspects of software
conversion and developed a methodology for the statistical analysis
of conversion sample data from the ongoing U.S. Air Force Base Level
Data Automation Program(otticially given the short title Phase 1IV).

The two areas specifically addressed by this research were
programmer productivity and effort estimation. Programmer attributes
#nd program characteristics were studied in relation to programmer
vroductivity in software conversion. Models for explaining
productivity were constructed and the impact of organization was also
considered. Existiﬁg applicable models for software conversion

effort estimation were e.amined and their accuracy was evaluated.

Environment specific regression models for effort estimation were
also constructed.

Several statistical and summarizing techniques were considered
for the analysis of the conversion sample data. AsS various aspects
of the data were studied, selected statistical techniques emerged as
more appropriate. These provided the basis for the methodology
formulated and used throughout the data analysis. The Air Force data
was utilized in a case study of the application of the methodology.
The analysis of conversion programmer productivity revealed that
experience, lines of code, a programmer's knowledge ;i the program,
organization, and other factors and attributes impacted productivity.
O0f the effort -estimation models studied, the Hahn and Stone model
exhibited the.best performance while the Federal Conversion Support

Center model had the lowest accuracy.
¢
4

© Accession For

; NT,LS (‘p \"1 E‘

| DITC T3 0

! Unanvounced i1

i

! Ju_w; and, ion.__—..__.._J

Bv___“ e m e _,.___.___...__.__J
~Distrioution/
vallabllity Cf\ou
"Avn L zag/ov
Dist { Sraclal

M]

AFIT/CI/NR 84-44D

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value and/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR
Wright-Patterson AFB OH 45433
PROPUC.TIVITY

RESEARCH TITLE: _ A Methodology For The Analysis Qf Programmer And Effort Estimation Within

The Framework Of Software Conversion
AUTHOR: John D. Fernandez

RESEARCH ASSESSMENT QUESTIONS:
1. Did this research contribute to a current Air Force project?

() a. YES () b. NO

2. Do you believe this research topic is significant enough that it would have been researched
(or contracted) by your organization or another agency if AFIT had not?"

() a. YES () b. NO

3. The benefits of AFIT research can often be expressed by the equivalent value that your
agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

() a. MAN-YEARS () b. §

4, Often it is not possible to attach equivalent dollar values to research, although the
results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

() a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

5. AFIT welcomes any further comments you may have on the above questions, or any additiona!
details concerning the current application, future potential, or other value of this research.
Please use the bottom part of this questionnaire for your statement(s).

NAME GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER PRODUCTIVITY AND EFFORT

H ESTIMATION WITHIN THE FRAMEWORK OF SOFTWARE CONVERSION

A Dissertation

by

JOHN DIEGO FERNANDEZ

Submitted to the Graduate College of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 1984

Major Subject: Computer Science

84 09 13 007

A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER PRQDUCTIVITY AND EFFCRT

ESTIMATION WITHIN THE FRAMEWORK OF SOFTWARE CONVERSION

A Dissertation

by

JOHN DIEGO FERNANDEZ

Approved. as to style and content by:

Salbie Meatgioand

S.V. Sheppard' !

(Cha:.rmap) '/ -
~ - .
"_7/ ¥ ’, A .
[’éé%ﬁ 'ALAQ;’ (&) Nerip e
w M. Lively D.3. Simmons
(Member) C/ ' (Member
g,// S - . .j/ /"
L i K @a AW
W.L. Fuerst McCormick
(Member) <Head ~: Departmen::

May 1984

iii

ABSTRACT

A Methodology For The Analysis Of Programmer Productivity And Effort
Estimation Within The Framework of Software Conversion (May 1984)
John Diego Fernandez, B.A., Texas A&I University;

M.S.E., West Virginia University

Chairman of Advisory Committee: Dr. S5.V. Sheppard

Software conversion is becoming increasingly significant as the
inventory of programs increases and as the 1life cycle of many
applications becomes longer. Although some work has been done in the
area of software conversion, it has received 1little research
attention since it has only recently become a more frequent
occurrence. This research considered two aspects of software
conversion and developed a methodology for the statistical analysis
of conversion sample data from the ongoing U.S. Air Force Base Level
Data Automation Program(officially given the short title Phase IV).

The two areas specifically addressed by this research were
programmer productivity and effort estimation. Programmer attributes
and program characteristics were studied in relation to programmer
productivity in software conversion. Models for explaining
productivity were constructed and tPe impact of organization was also
considered. Existing applicablé models for software conversion

effort estimation were examined and their accuracy was evaluated.

iv

Environment specific regression models for effort estimation were
also constructed.

Several statistical and summarizing techniques were considered
for the analysis of the conversion sample data. As various aspects
of the data were studied, selected statistical techniques emerged as
more appropriate. These provided the basis for the methodology

formulated and used throughout the data analysis. The Air Force data

was utilized in a case study of the application of the methodology.
| Unique features of the data which entered the analysis included
government programmers, less than half being college graduates,
working in different organizations and converting COBOL-68 programs
to COBOL-74 with the maximum program length being 5000 lines. The
analysis of <conversion programmer productivity revealed that

experience, lines of code, a programmer's knowledge of the program,

organization, and other factors and attributes impacted productivity.

In addition, the Hahn and Stone effort estimation model exhibited the

best performance in estimating system level effort while the Federal
Conversion Support Center model had the lowest accuracy. Other

effort models were also studied.

e i benn g et ik e A

ACKNOWLEDGEMENTS

First, I thank my wife Mary and our children, Daniel and Monica,

i for their love and understanding and for getting along without me for
[much of the time that I worked on this project. I then acknowledge
' my chairperson Dr. Sallie V. Sheppard who became a trusted friend and
whose encouragement and confidence helped to sustain me through the
rough spots of this endeavor. I thank Dr. W.M, Lively and Dr. D.B.
Simmons for their support and for helping to adjust the focus of my
research objectives. Dr. W.L. Fuerst provided a welcomed broader
perspective. Dr. R,P. Schmitt, my Graduate College Representative,
was always very supportive and readily available. Mr. Eddy
Fernandez, C.D.P., suggested some ideas to pursue for more efficient
data entry. 1Lt J. Cogburn and 2Lt R. Naylor, of the Air Force
Automated Systems Project Office(AFASPO), provided the data and
invaluable support for this research. I especially thank Col. R.
Hedges who approved the release of the data. Four other Air Force
organizations, AFDSDC, TAC, SAC and ATC, provided additional
information. Capt Ken Hebert's experience with Phase IV prompted my
investigation of the conversion area. I thank Anne Coleman from the
Statistics Department for her guidance during the research and for
reviewing the manuscript.
There are many individuals at Texas A&M University, with whom I
came in contact, that made my time here a very worthwhile and
rewarding experience,

Last but not at all least, I thank the Lord for being there!

TABLE OF CONTENTS

CHAPTER

I INTRODUCTION . & o o« ¢ o o o « ¢ o o o o o o

Description of the Conversion Problem . .
Software Conversion Fundamentals . . « . .
Current Research Interest in Conversion .

Air Force Base Level Data Automation Program

Overview of Research and Chapter Summary .
II PANORAMIC VIEW OF SOFTWARE CONVERSION ., . .

Conversion Types and Techniques
conversion ProCesSS « « « o o « o o o o o
Conversion Planning . . . « « « + « » .
Management Concerns . . « « o« « ¢ o o
The Contracting Option
Conversion Tools . « + ¢« ¢ ¢« ¢ ¢« o o o &

III CONVERSION EFFORT ESTIMATION AND PRODUCTIVITY
Cost/Effort Estimation

Basic Estimating Concepts « « &
Conversion Effort/Cost Estimation Models

Development Models of Interest
Software Conversion Productivity
Productivity Measurements
Productivity Studies « « ¢ . .

IV AIR FORCE PHASE IV PROGRAM

Program Prescription « ¢« ¢« & .+ . .
Phase IV Materialization ¢« ¢« « &«
Conversion Assistance, Tools and Procedures
Initial Conversion Experiences
Conversion Effort Data Collection

v CONVERSION PROGRAMMER PRODUCTIVITY ANALYSIS .

Introduction . ¢ ¢ ¢« ¢ ¢ 0 0 0 e 4. . . s
Preliminary Analysis « « . « + &
Definitions and Assumptions
General Overview of Analysis Methodology

Selection of Relevant Variables

Page

O ook

11

11
17
19
22
25
25

28

29
30
32
35
37
37
40

51

51
53
54
57
59

66

66
66
67
68
69

vii

Table of Contents (Continued)

CHAPTER Page

Categorical Variables Subjected to Analysis of
Variance .« « ¢ « ¢ « ¢ o o o e e s o e o s e 4 « 69
Continuous Variables Scrutlnlzed P X
Model Variables Selected . + « ¢ ¢« + ¢ ¢« v + ¢« ¢« « « 16
Model Specification and Analysis . . « + « =« + « » « . 16
Initial Model Analysis« + « v ¢« ¢ v ¢ « o o« . 17
Reduction of Initial Model . . . ¢« ¢« « ¢« ¢ ¢« ¢« ¢« « « 19
Alternate Dependent Variable Models B84
Consideration of Organizational Impact 88
Model Validation . . « v ¢ ¢ ¢ ¢ ¢« 4+ 4 ¢ e e v e e 90

Vi SOFTWARE CONVERSION EFFORT ESTIMATION ANALYSIS 94

Introduction ¢« ¢ 4 & ¢ o o . -1
Respec1f1cat10n of Effort Estimation Models e« « s e & . 96
CSC Cost Model e e e e e e e e e e e . 97

Hahn and Stone or MITRE Model O K01
Grim, Epler and Andrus Model 103
Wolberg Model . . . ¢« & ¢ ¢ v ¢ 4 o s s o o o « « o+ 104
Basili and Freburger Model 105
Validation of Existing Models e« . s . . 106
Measurement of Accuracy of Basic Models « + « e« « . 106
Analysis of Refined Models « « « « . 108
Development of Models With Regression AnalYSlS o o .o 112
Exponential Form Effort Model 113
Additive Form Effort Model « . + « . . 114
Final Comparison of Models « 115
Organizational Impact Model 117

VII SUMMARY AND RECOMMENDATIONS « « « « « . o 120

INtroduction ¢ ¢ ¢ o ¢ ¢ ¢ o 4 o o e e s s e e o+« « 120
Overview of Work Accomplished 120
Significance of Research Outcomes 121

Summary of Methodology Formulated 121
Productivity Methodology ¢« « ¢« ¢« « ¢« +« +» . 123
Effort Estimation Methodology . . . « ¢« ¢« + « « . . 124

Summary of Productivity Analysis +. + . ¢« + . . 126

Summary of Effort Estimation Analysis 129

Management Considerations« . + « ¢« ¢ ¢« + « « .+ . 131
Data Collection FOIMS . . & + &« « « o o o & « » o o 131
Data Submission ProceduresS « « « o + o & o o 132
Controlling the Process . . « « « o « o« o o« o« « » o+ 133
Personnel Selection Considerations 134

Future Research Possibilities « « . 134

Table of Contents (Continued)

CHAPTER

REFERENCES« « . .

GLOSSARY . + v & ¢ @ ¢ v o o« o &

APPENDIX
A DETAILS OF CONVERSION EFFORT/COST ESTIMATION MODELS .
B DATA ENCODING AND PRELIMINARY ANALYSIS
C PROGRAMMER RESUME FILE + « .« .

D PROGRAM INFORMATION FILE

VITA . v 6 6 v e o v 6 o o o o

viii

Page

137

143

149
176
199

209

220

TABLE

10

i1

12

13

14

15

16

17

18

19

20

21

LIST OF TABLES

Classification of Conversion Efforts
Comparison of Phases of Software Conversion . .

Lines of Code Per Hour (LOCPERHR) Averages for
Categorical Variables. . . . « ¢ + o« & « o+ o &

Initial Version of Productivity(LOCPERHR) Model.
Final Version of LOCPERHR Model.
Final HRPERHLO Alternate Productivity Model. .
Final LOGLOCPH Alternate Productivity Model. .
Final LOCPERHR Model With Organization.
Phase IV System Level Effort Data.
Summary of Conversion Effort Estimation Models.
Validation/Accuracy Measures of Basic Models. .
Organizational Impact Effort Model
Task Percentages for FCSC Complexity Classes
Hahn and Stone Conversion Production Mean Rates
Hahn and Stone Documentation Status Categories
Hahn and Stone Modification Level Ratings . .
College Education Categories.,
Academic Majors and Minors. « « ¢« + . .
Formal Training Categories. « . .
Programmer Experience Categories.

Programming Language of Programs to Convert. .

Page

12

18

71
78
8l
85
87
89
95
107
107
118
152
165
165
166
177
178
179
179

180

ix

TABLE

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

List of Tables (Continued)

Conversion Experience Categories. . . e v e e e
Programmer Resume Data Record. . . « +« « « ¢ & o &
Program Information Data Record.
Types of Phase IV Programmers. . . « « « + »
College Education of Phase IV Programmers. . . .
Summary of Majors of Phase IV Programmers. . . .
Formal Training Profile of Phase IV Programmers. .
Conversion Experience of Phase IV Programmers. . .

Regrouping College Education, Major and Conversion
Categories. . « v ¢ v ¢ o ¢ 4 v b e e e s e e e e

Summary of Chi-Square TesStS. « « + &« « « & o & &

Partial Correlation Matrix and Factor Analysis. . .
Phase 1V Programmers Experience Summary.
Phase IV Programs By Type and Number of Programmers.
Program Difficulty Counts & Totals. . « « « & « «
Conversion Activities: Times & Percentages.

Productivity and Other Summary Measures.

Page

181
182
183
185
185
186
186

187

189
190
191
192
1983
194
194

195

LIST OF FIGURES

FIGURE Page

1 AFARSPO Phase IV Programmer Resume FOIM . + « « &+ +« » « « » « 61
2 AFASPO Phase IV Program Information Form 62
3 Plots of Estimates of Basic Models for a Small System . . . 109
4 Plot of Refined Models and Regression Developed Models . . . 116

5 LOCPERHR versus Knowledge(KCA) of programmer for single
programmer type programs. . . . e v e e e e s s e e s s s 197

6 LOCPERHR versus Program Difficulty(SUMDIF) for single
programmer type ProgramS. .« « « « « + s o s o o o o« o ¢ o o 198

CHAPTER 1
INTRODUCTION

Software conversion is becoming increasingly significant as the
inventory of programs increases and as the life cycle of many of |

these applications becomes longer. Although some work has been done

in the area of software conversion, it has received little research

attention since it has only recently become a more frequent and

costly occurrence. Additionally, little software conversion effort ~

data has been available outside the few vendor firms performing

conversions. In the field, conversion has not received the attention .

it merits since it has traditionally been considered to be of "low

status”. ‘
This research developed a methodology for the analysis of

software conversion which investigates programmer productivity and

effort estimation. Two items specifically studied are the accuracy

of software conversion effort/cost estimation models and the

correlation between conversion programmer productivity and programmer

attributes. The procedures developed for the analysis were used in a

case study of conversion sample data available from the ongoing Air

Force Base Level Data Automation Program(officially short-titled

Phase 1IV) which involves the replacement of over 200 computer

hardware systems and the associated conversion of about 300 software

The journal used as a pattern for format and style was Computing
Surveys.

P . -

FRECEDING PAGE BLANK-1OT FILMED

- -

L S

systems by over 20 different Air Force organizations. Environment-
specific effort estimation and productivity models resulted from the
analysis. The overall results are primarily applicable to one type

of conversion but provide guidance and a foundation for work with all

types.

Description of the Conversion Problem

The U.S. General Accounting Office(GAO) has found that the length of
the 1life cycle of computer hardware systems within the federal
government is about seven years[General Accounting Office, 1977].
This infers that every federal organization using a computer may
sooner or later have to convert its application software. By
increasing the capacity of the existing hardware configuration, an
organization may find it possible to postpone a conversion. However,
sooner or later, every organization will have to replace its computer
system with a new machine for technical and/or political reasons.
Wolberg sees the need for conversion as being dependent on the
failure of a particular computer environment to function as required
or because a vendor has discontinued support for a specific piece of
software or hardware[Wolberg, 1983]. Changes become necessary for
one or more of the following incentives: increased capacity,
increased reliability, improved performance or reduced cost,
Whatever the reason for the change, an analysis of the costs and
available options and impacts must always take place. Some changes,

such as the acquisition of additional disk drives, rarely affect

software. However, the replacement of one computer with another will
typically require some degree of changes to the software especially
if the architecture changes.

The GAO reported in 1977 that the federal government was
spending more than $450 million per year to convert programs[General
Accounting Office, 1977]. Though conversions may be more fregquent
within the government, Wolberg stated in 1983, that the worldwide
annual cost of conversion was estimated at several billion dollars
and that surveys estimated the cost of conversion to be as high as
10% of the computing budget[Wolberg, 1983]. Boehm stated that the
annual cost of software in the U.S. in 1980 was approximately 40
billion dollars or about 2% of the Gross National Product(GNP)[Boehm,
1981]. He further added that these costs are expected to grow to
8.5% of the GNP by 1985 and 13.5% by 1990. By analyzing these cost
statements, one can conclude that a current estimate of annual
software conversion costs in the U.S. may be about $4 billion.

The GAO report includes the results and analysis of a GAO survey
which concluded that about 24% of software conversion costs could be
eliminated by improving the conversion process as well as the quality
of new software development which will make future conversions
easier. As the cost of software increases so does the importance of
producing cost effective software through development and conversion.
The challenge to software professionals is quite clear[Fernandez,
1982]. Software conversion research efforts are essential to the

industry.

Boehm emphasized that poor management can increase software

costs more rapidly than any other factor{Boehm, 1981]. This
statement was made concerning new software development, but it is
H also applicable to conversions. Oliver pointed out that most of the
ignorance regarding conversion has to do with the process
itself[Oliver, 1978]. All too often, organizations mistakenly liken

conversion to development, fail to plan and prepare properly, and

invariably allocate resources parsimoniously to the converison
effort. Planning for the software conversion required in a hardware
replacement is wusually done too late to avoid multiplying the

problems of a conversion.

Software Conversion Fundamentals

The need or desire to move software from one environment to another
is fundamental in the usage of computers. This move typically occurs
during the maintenance phase of an application system's life cycle
and it could be triggered by a new operating system, a new hardware
configuration, or langquage and compiler changes. Wolberg suggested
three basic alternatives that may be considered when such a move is
contemplated[Wolberg, 1983]:

1. Emulation -- A process by which the new environment is made to
directly execute software written for the original
environment.

2, Conversion -- A process in which changes are made to the
software so that the original system will execute properly in

the new environment.

A

3. Replacement -- Alternative software is either developed or
acquired for the new environment. This is the most radical

choice.

D. Schneider suggested a fourth alternative that could be
considered{Schneider, 1978}:
4. Termination -- Considering termination forces the examination
of the essentiality of the system.

If emulation is possible, no software changes are necessary.
However, emulation is not a feasible alternative because it is often
“ costlier than imagined and is least effective in terms of utilizing
the new hardware or software. It is only an interim solution which
does 1little but delay the eventual necessary conversion[Oliver,

1976]. 1If the replacement option is selected, the original software

is typically discarded in its entirety[Wolberg, 1983]. Replacement

may be accomplished by purchasing or leasing a standard software
package or by a new development effort. Since the termination of a
system is highly unlikely and since emulation and replacement are !
typically inappropriate, conversion is the most freguently chosen
alternative.

Although the GAO found the typical 1life cycle of computer
hardware systems within the government to be seven years(architecture
life cycles are longer), many existing programs in federal agencies
were designed for, and are operating on, computer systems that are
fifteen years old and older, before on-~line systems, random access '

and telecommunications were generally available([Collica et al., L

1980]. Many cf these programs use techniques common to second
generation computers, such as tape-oriented Dbatch systems,
programming in assembly language or in very early versions of COBOL,
FORTRAN or even in AUTOCODER.

In many cases, these programs perform vital functions, such as
payments to retirees or agency personnel. Converting these programs
is difficult, costly and time consuming so conversion is justified
only if the hardware or software has become obsolete and is no longer
supported by 1its manufacturer or if the system has reached
saturation, i.e., there are not enough hours in a day to run all the
required programs[Collica et al., 1980].

Once the decision has been made to convert software, there are
basically three approaches or techniques which can be used in the
process[Wolberg, 1983; Collica et al., 1980; Oliver, 1978]:
recoding, reprogramming and redesign. These techniques are discussed

in the next chapter.

Current Research Interest in Conversion

The Department of Defense Software Technology for Adaptable, Reliable
Systems(STARS) Program Strategy expressed the concern of the computer
community for more aggressive research in all areas of software
engineering[Department of Defense, 1983]. Two items of interest
which were defined as functional task areas are measurements and
human engineering. This thesis research makes a valuable impact on
this new initiative since software conversion measurements, including

programmer productivity, are investigated.

Collica et al. 1listed several critical areas in need of
immediate attention by researchers[Collica et al., 1980]. Two of
these critical areas which were studied in this research are:

1. Conversion cost estimation guidance is needed.

2. The different types of people who are required for various
types of conversions need to be identified.

Dunham and Kruesi emphasized the environmental specificity of
resource estimating as an important issue{Dunham and Kruesi, 1983].
They pointed out that the accuracy of models typically vary
considerably across different organizational environments. As one
gains greater insight intos the various environments by specific
studies, the subject of effort estimation will become clearer.

Chrysler proposed programming research environments that require
investigations such as he «conducted to determine significant
characteristics affecting development time[Chrysler, 1978). He
proposed no conversion environments, so this research adds a new
dimension to Chrysler's suggestions for research.

Since there is currently no pool of professionals experienced in
software conversion except for the few vendor firms that specialize
in this area, an agency called the Federal Conversion Support
Center (FCSC) was established in 1980 to assist federal organizations
in planning and performing software conversions. Wolberg remarked
that general software management planning procedures suggest the
making of estimates of effort, resource requirements and project

duration while considering the level of performance and productivity

A

of personnel[Wolberg, 1983]. There is a definite lack of research in

the area of software conversion that addresses these management

concerns. This research is just one of the many efforts required to

£fill the void that exists.

Air Force Base Level Data Automation Program

A current Air Force computer replacement effort, the Base Level Data
Automation Program(officially titled Phase IV), is replacing over 225
obsolete base 1level computer configurations with about 150 new
computers. It appears that the short title of Phase IV was chosen to
indicate the fourth contractural agreement for Air Forae base level
support. All existing base 1level software systems are being
converted to the new hardware. Several Air Force organizations are
converting their own systems totaling about 3 million lines of code
while a contractor is converting common systems which total about
half that amount.

The Air Force Automated Systems Project Office(AFASPO) has
primary responsibility for managing the Phase IV Program including
the establishment of reporting requirements applicable to all
participants. Since the inception of the program, the AFASPO has
been receiving monthly status reports from all organizations involved
in the conversion. In June 1983, the AFASPO requested that all

organizations submit programmer resumes for all programmers

participating in the conversion and basic program description or

information forms for each program converted[AFASPO, 1983]. A

fundamental basis for this data collection was the Air Force's
acknowledgement of software conversion as a significant area
requiring increased attention.

The AFASPO plans to provide the raw data to the Rome Air

Development Center(RADC) or some other research agency for its
analysis uvpon completion of the entire conversion effort. The
preliminary set of data was made available for use in this thesis
research in order to perform an initial exploratory analysis. When
the conversion effort is completed in late 1985, the total data can

be analyzed using the procedures developed by this research.
Overview of Research and Chapter Summary

During the preparatory stages of this research, an extensive
literature review was conducted. Chapter 2 presents an overview of
significant literature related to the general area of software
conversion. This chapter provides the framework for all that is to
follow. The two major items of interest, programmer productivity and
effort estimation, are discussed and reviewed in Chapter 3. Some of
the literature in this chapter refers to software develcpment since
there are items of interest that overlap with software conversion.

An integral part of this research is the Air Force Phase IV

|
I

software conversion effort. Chapter 4 provides the basic details of

the Phase 1V program which are essential for a complete understanding

of the data collected.

The preliminary stage of the research involved a review of the
data collection forms and the development of an encoding scheme for
efficient data entry and manipulation. This stage included a basic
and separate analysis of the resulting programmer resume file and the
program information file. The first major step of the research
required the merging of the program infcrmation file with the
programmer attribute file to form composite records for analysis.
The objective was to study the impact of programmer attributes on
productivity. Chapter 5 presents the analysis conducted and the
results obtained from investigating the sample data.

The last step of the research involved an evaluation of the
accuracy of notable conversion effort/cost estimation models. Phase
IV system level effort data was obtained to conduct this study and to
permit the development of an effort estimation model specific to the
environment. Chapter 6 details this work and the modifications of
existing models performed in an attempt to improve their accuracy.

Finally, Chapter 7 presents a summary of the methodology
formulated for use in this research plus a summary of the case study
findings and conclusions. A discussion of future research

possibilities is also included.

10

CHAPTER II

PANORAMIC VIEW OF SOFTWARE CONVERSION

The following definition of software conversion has been used in this
research:
Software conversion is a process of transporting a program or
system solely for the purpose of enabling such a program or
system to execute correctly in an environment different from
the one for which originally developed.
This chapter reviews the literature in the general area of software
conversion while the following chapter presents the related

cost/effort estimation and productivity literature.

Conversion Types and Technigues

A summary of the possible types of conversions and an assessment of
the relative difficulty of the effort involved is presented in Table
1. Classifying conversions by source and target environments gives
an indication of their wide wvariance as well as the level of
difficulty which should be anticipated in different types of
conversions. Within each environment, one can specify the same or
different computers and/or languages. A and B stand for different
computer hardware, L1 and L2 represent different languages and VX,
VY, and VZ are different versions of a language for possibly

different operating systems.

11

12

Table 1. Classification of Conversion Efforts

Class Source Target Difficulty
Computer Lang. Ver. Computer Lang. Ver.

1 A Ll VX B L1l VX Average

2 A L1l VX B Ll VY Difficult

3 A Ll VX B L2 vz Most Difficult

4 A Ll 1'.4 -1 Ll VY Easy

5 A L1 VX A L2 vz Highly Difficult

Adapted from [Wolberg, 1983].

The conversion of existing software into another language
involves a change of implementation language. These are shown in
classes 3 and 5 of Table 1 where L1 and L2 are different. Notice
that these two classes are of the greatest relative difficulty.
Class 2 indicates a conversion from one machine to another using a
new version of the existing language. This class is just below the
level of difficulty of classes 3 and 5. Most of the software being
converted in the Air Force Phase IV project is in class 2 while some
is in class 3.

When a decision is made to convert the original software, there
are basically four strategies, according to Wolberg's definitions,
for completing the task[Wolberg, 1983]:

1. Translation -- The primarily automatic conversion of software.
2. Recoding -— The manual conversion of software.
3. Reprogramming -- The conversion process which includes some

system redesign but no significant functional redesign.

n

RSP

4. Redesign -~ The conversion option which includes a functional
redesign of the system thus implying a level of software
development.

Wolberg further states that translation and recoding use the
original software as the specification for the new system.
Reprogramming uses the original software plus the functional
specifications to develop the new software. This new software will
differ, to a varying degree, from the original software. Redesign is
more expensive than reprogramming and will produce software that
bears little resemblance to the original. He complicates the subject
by defining the term "conversion" to mean a process with an important
degree of translation and/or recoding. Thus, he makes a distinction
between systems that are converted and those that are reprogrammed or
redesigned. Oliver and Collica et al. present similar breakdowns and
descriptions of conversion techniques; however, there are some
differences that cause confusion when comparing all the
descriptions[Oliver, 1978; Collica et al., 1980].

To clarify the techniques, there is a need to provide the basic
list of software development documents upon which the software
conversion is based. The document list, providing the framework for
the conversion, is assumed to include:

1. functional specifications,

2. system design specifications, and

3. program descriptions(most importantly, the source code).

13

Each level of documentation obviously provides greater detail and

more structure.

With this framework in mind, one can then differentiate between
the conversion techniques by specifying the representation or
documentation of the existing software used in the conversion. For
this research, recoding is assumed to include a combination of
automatic translation and manual visual inspection of the code, while
reprogramming and redesign assume their normal definitionms. In
recoding, the existing source code is used as the basis while in
reprogramming the system design specification serves as the basis of
the conversion. In redesign, the functional specifications of the
system are used in the conversion so that the user's viewpoint of the
function of the software remains unchanged. A software conversion
effort may involve only one of the recode, reprogram and redesign
approaches or it may follow any combination of the three[Fernandez
and Sheppard, 1984].

There are tradeoffs associated with these three approaches.
Recoding is the easiest to do since each line of existing code is
translated to an equivalent line(s) of code in the new environment.
This translation can often be at least partially automated by writing
a program or using a vendor's product to perform the line-by-line
conversions.

Redesign is the most difficult approach to conversion since a
new design specification is required before the programming can be

done. Different algorithms, logic and program structures may be

used. Rarely can this type of conversion utilize automatic
conversion aids. However, redesign does allow the maximum
improvement in the system in terms of taking advantage of features of
the new language or environment as well as any recent developments in
algorithms.

Reprogramming ranks in difficulty between recoding and redesign.
It involves an analysis of the system being converted based on the
existing design documents. The same functions and algorithms remain
but some new code with cdifferent logic may be included. It is
significant that all three techniques provide the wuser with
functionally equivalent software. This is the essence of the
conversion process.

Management must take great care in deciding which technique(s)
should be used for the conversion project. Collica et al. suggest
the following criteria for this decision[Collica et al., 1980].
Recoding may be selected when the source and target languages are
similar and the hardware/software capabilities of the source and
target computers are comparable. Reprogramming is applicable when
the source and target languages are dissimilar as when converting
from a low level to a high level language. Redesign is the correct
choice when the source program is many generations old, is poorly
structured and documented and the design is out of date.

A type of software conversion that provides a unique set of
difficulties is one that involves a data base management system(DBMS)

environment. A conversion that involves COBOL programs utilizing a

15

DBMS can be as much as ten times more costly as the same programs in
a file environment{Collica et al., 1980]. General solutions to DBMS
conversion problems are still in the research stages primarily
because there are many DBMS's in the marketplace but 1little
commonality exists among them.

Fry et al. discussed the conversion of data base systems,
detailing the problems involved and the automated tools underqgoing
research that may be useful for converting data bases and related
programs[Fry et al., 1978]. These conversions are difficult because
of the proliferation of data models and levels and styles of DBMS
interfaces, internal data representations, and hardware
architectures. Little work has been done in the area of DBMS
applications because of their complexity. Shneiderman and Thomas
described an automatic data base system conversion facility which
provides one approach to coping with the data base conversion
problems(Shneiderman and Thomas, 1982].

Oliver discussed several aspects of conversion which may involve
technical difficulties no matter what type of conversion is
involved[Oliver, 1978]:

1. Problems arise when the source machine sets special indicators
or switches, such as, overflow, invalid data, etc., and the
target machine either does not or does so under slightly
different conditions.

2. The format and the amount of information that is specified to

define a file varies among languages.

3. There is no "standard" format for the recording of variable
length records on tape or disk.

4. File organization becomes a significant consideration on any
nonsequential file since the processing of such files may
vary by language and machine.

5. Data may be represented in different ways on the source and
target machines.

6. Differences created by individual organizational programming

practices can create significant problems.

Conversion Process

As is the case with new software development, there is no clear
consensus on the definition of the steps or phases of a software
conversion process. Table 2 presents three different views of the
phases of software conversion. The three stages or phases of the
conversion process as defined for Phase IV are used in this research.
The first stage, the pre-conversion stage, includes a preliminary
study, planning and data preparation. The conversion or second stage
involves the actual conversion of the software and applicable
testing. The third or post-conversion stage includes updating
documentation, implementation, and the application of critical
changes.

The preliminary study conducted during the pre-conversion stage
is a very important step of the conversion process. It includes

investigating all possible alternatives to insure that conversion is

17

Table 2. Comparison of Phases of Software Conversion

Collica et al.* Wolberg* Air Force Phase IV*
Planning Planning Pre-Conversion
Data Preparation Data Preparation Conversion
Translation Conversion Post-Conversion
Unit Testing Testing

System Testing Implementation

Parallel Testing

*[Collica et al., 1980; Wolberg, 1983; Air Force Automated Systems
Project Office, 1982b].

the best option available to obtain the required computing
capability. The planning function will be discussed in a subsequent
section of this chapter. The data preparation step is significant
since there is typically a large volume of data that enters the
conversion process. The preparation of test files that will execute
a high percentage of the code is an important aspect of the pre-
conversion stage. The FCSC provides some forms that can assist with
this phase[Federal Conversion Support Center, 1982b].

The conversion stage involves using one or more of the
techniques discussed earlier and testing the results. Substantial
effort is required to correct logic errors that may have existed in
the original source software or that were introduced by the
conversion process. Generally, conversion problems are discovered
when test data is passed through the software. Problems may continue

to appear as additional integration occurs in system testing.

The post-conversion stage is the "bread and butter" stage for
future conversions and maintenance of converted software. All the
documentation is changed to reflect the new hardware and/or software
environment. Even though few changes may be required in some cases,
their significance can not be minimized. Operations in the new
environment can be implemented in parallel with the old environment
with changes being made to the software only after cutover of an
application is achieved.

Lynn et al. discussed some management policies used to assist
with the successful completion of a conversion effort[Lynn et al.,
1979]. The overall management policy for a system which was
undergoing conversion was to restrain new development as much as
possible until the conversion was finished. Only the most essential
changes to correct critical errors were permitted for programs

undergoing conversions.

Conversion Planning

Experience in software conversion projects suggests that adequate
planning and preparation is the key to success[Fernandez and
Sheppard, 1984). There are usually several steps included in the
planning function. Wolberg's planning steps can be described
as[Wolberg, 1983]:
1. Requirements analysis ~- The first step is to prepare an
inventory of the programs and files to be converted. The

inventory should be updated as details, such as number of

19

statements in various languages, total number and types of
records, etc., are determined.

2. Conversion guide preparation -- The guide identifies the
differences between the source and target environments and
covers all aspects of the conversion, including the
conversion of programs, cdata, and so on.

3. Conversion methods determination -- Based on the previous two
steps, the aspects of the conversion which will be performed
manually and those which will be performed using conversion
tools and aids are determined.

4. Estimation of required resourcess-- Estimation techniques are
selected and applied. Wolberg specifically mentions that
estimating productivity is a crucial step in the planning of
a conversion project since it directly impacts the effort
estimation.

5. Scheduling -- A schedule based on an estimate of required
resources is prepared. The scheduling takes into
consideration such obvious factors as hardware delivery
dates.

If the conversion effort is to include much reprogramming and
redesign, a functional analysis of existing systems could identify
frequently used functions that might be developed into reusable
modules[Fernandez and Sheppard, 1984]. The relative inefficiency of
the converted code compared to the original software must be

considered in the planning function. For applications where

20

degradation in space and/or time regquirements cannot be tolerated,
further attention from the programming staff will be required.
Appropriate allowances for this effort should be included in planning
for the conversion.

There are unique requirements that must be considered during the
planning function. The training of programmers to write in a new
language of the target environment must be planned for well in
advance because of conflicts that may arise in current work schedules
and schedules of available training classes. If the new language is
Ada* then Ada training must even take programmers into an advanced
"language mind-set"” to produce proficient programmers{Fernandez aad
Sheppard, 1984].

An FCSC survey revealed that a major complaint echoed by all
interview participants was that the time allowed was insufficient to
adequately plan the conversion effort[Federal Conversion Support
Center, 1983b]. A complex conversion may require as much as 40% of
the effort devoted to planning, quality assurance and configuration
management. It is important to realize that as unexpected variables
become evident during the conversion, the plans will require
revision. Management dquite often underestimated the cost of
conversion and the effort involved and therefore developed unworkable
and unrealistic conversion plans. Better estimating techniques are
needed to assist managers realize the scope of the effort and thus do

better planning. The FCSC has published other documents specifically

o ——— o vt

* Ada is a registered trademark of the Department of Defense.

21

designed to assist the conversion planner in the preparation of plans

and work packages[Federal Conversion Support Center, 1982b; 1983a].

Management Concerns

Wolberg stated that an important, but not well known, fact about
conversions is that they tend to have more problems with management
than technical aspects. One problem is management of the data
involved in the conversion process. A conversion contractor, Rand
Information Systems(RIS), has found that taking a single program from
the source environment to the target environment may require, on the
average, five or six data sets which . .clude the source material, a
couple of input files, a couple of output files and perhaps the
master file[Wolberg, 1983]. This means that to convert 1000
programs, 6000 data sets may have to be managed. Critical to an
organization's ability to manage the conversion is the control of
materials, such as, record definitions, record 1layouts, system
flowcharts and documentation on how the program is used.

Oliver related that there is a significant difference in
emphasis between the management of a conversion project and the
management of a development project. A conversion project redquires,
and allows for, more discipline and stricter adherence to procedures.
A conversion may very well be an assembly-line type of operation,
where the total effort is broken down into well-defined tasks which
are more dependent upon experience and strict adherence to procedures

than on innovation and ingenuity for their successful completion.

22

i
|
|
)

Oliver also pointed out that many of the ground rules for software
production do not apply to conversions. An example is that manpower
and time are not generally interchangeable in a software development
project, but within certain bounds, they are in a conversion
project[Oliver, 1979b].

Boehm observed that poor management can increase software costs
more rapidly than any other factor[Boehm, 1981]. He made this
statement primarily for software development projects but from
Oliver's statements above one can conclude that this is even more
true for software conversion projects.

Collica et al. were emphatic in their statement that managers
are often threatened by conversions because they have neither planned
nor budgeted for conversion[Collica et al., 1980]. Managers are
eventually forced to convert in a timely manner with as little
disruption to the ongoing system as possible. Managers must also
deal with programmers who view conversion with equal disdain.
Conversion programmers are called on to work with programs they
neither designed nor coded on a machine with which they are not
familiar to perform functions that are somewhat mechanical and not as
intellectually stimulating as new coding or design. Managers must be
prepared for this "people problem" challenge to avoid multiplying the
difficulties involved. Getting programmers involved in the early
stages of conversion, especially in the study and selection of
conversion techniques, can make them feel more a part of the total

project.

23

Chapin discussed the fact that management decisions play a
critical role in determining the level of staff productivity in the
maintenance of computer programs and systems[Chapin, 1981].
Historically, the builders of the programs and systems have acted as
though someone else - the user and the maintainer - were going to pay
the costs of use and maintenance. Chapin's observations apply
completely to conversions, requiring managers to be concerned with
the future impacts of current decisions.

The GAO suggested ways to improve software conversions and
reduce their cost[General Accounting Office, 1977]. One suggestion
was greater emphasis on guality in the original development of
software and documentation. The possible greater cost of software
development can be more than offset by easier and less costly future
conversions. More widespread wuse of automated programmer
productivity aids can also ease software conversion as well as
software development problems. Conversion cost can also be reduced
by management recognizing that most software will eventually be
converted to new equipment and then taking steps to avoid the use of
vendor-unique features. Because of the general lack of conversion
expertise, Oliver stated that it would generally be wise for
organizations to avail themselves of contractor support for
conversion because of their extensive conversion experience[Oliver,
1978]. However, great care must be taken in pursuing the contracting

of the conversion process.

24

The Contracting Option

A National Bureau of Standards(NBS) study pointed out that it is
unlikely that many of the programming staff will have participated in
a previous conversion at the same agency since the average time
between computer replacement in federal agencies was found to be
seven years, which is about double the tenure of a programmer/analyst
at a given installation[Skall, 1982). Many people on the conversion
staff may also lack intimate knowledge of the software to be
converted due to personnel turnover.

Much of the anxiety and uncertainty surrounding a conversion may
be alleviated by contracting an experienced vendor. Contracting may
be the only option available since hiring freezes and personnel
ceilings prohibit many agencies from acquiring additional perscnnel
for a conversion project.

The contracting option will not solve all of a manager's
problems. Contracting may multiply the complexity of the entire
effort so it must be approached with caution., The FCSC provides a
document to assist with the contracting option[Federal Conversion

Support Center, 1982b].

Conversion Tools

As in a program development effort, the size of the project
determines the significance of using conversion aids. The workhorse
of the conversion project is the automatic converter. There are

numerous products on the market to convert one language to another

25

language and/or from one computer to another. Suppliers of suitable

tools for the conversion effort may be found in the current
literature. Datapro presents extensive conversion products in the
Programming Aids section of their annually updated reports[Datapro,
1983]. The FCSC also published a list of software available with
detailed information regarding function, applicable hardware and
operating systems, source and target details, plus references to
additional information[Federal Conversion Support Center, 1982c].
All the data in the report was verified by the conversion product
vendors prior to its publication. The FCSC intends for the survey to
be one of the primary sources of information on conversion tools
available to federal agencies. This survey is upgraded annually by
the FCSC.

The limitations of software conversion tools must be realized.
Collica et al. discussed the problems of the semantic definitions of
source codef{Collica et al., 1980]. They related that autumated tools
typically solve the easy problems which are encountered in
conversion, such as the differences in syntax between two languages.
However, the semantics of a block of code can sometimes be determined
only by interfacing directly with the author(s) of the code.
Automated translators wusually will not translate the correct
semantics of a block of code if the semantics cannot be identified by
merely scanning the code.

Collica et al. provided an example of problem code for a

translator[Collica et al., 1980]. The following block of FORTRAN

—

code written for a CDC 6700 computer which stores 10 characters per
word is to be translated into IBM FORTRAN to run on an IBM 360/370:
COMMON A(4), B(4)
DO 100 I=1,4
B(I)=A(I)
100 CONTINUE
Since these 1lines of code are syntactically correct IBM FORTRAN
statements, a translator would probably not modify them. However,
the arrays A and B may have been used to store a 40 character string
on the CDC machine with 10 characters per word. Since the IBM
machine stores 4 characters per word, the code should be modified to:
COMMON A(10), B(1l0)
DO 100 I=1,10
B(I)=A(I)
100 CONTINUE
A translator would probably not be able to "know" if array dimensions
and/or loop counters for a block of code were set up to handle
character data. Tools are not an end in themselves, but rather one

part of a complex management strategy required for the conversion

process.

27

CHAPTER III

CONVERSION EFFORT ESTIMATION AND PRODUCTIVITY

Estimation and productivity involve measures of one type or another
and the importance of studying them is made clear from Boehm's quote
of Lord Kelvin[Boehm, 1981]:
When you can measure what you are speaking about and express it
in numbers, you know something about it; but when you cannot
measure it, when you cannot express it in numbers, your
knowledge is of a meager and unsatisfactory kind: it may be the
beginning of knowledge, but <you have scarcely, in your
thoughts, advanced to the stage of science.

Mills stated that there are two parts to an estimate: making a
good estimate‘and making the estimate good[Mills, 1980]. Effective
management and software engineering techniques must surround both
parts of Mills' estimate, In addition, part one, making a good
estimate, is directly concerned with the use of cost estimation
models. Part two of Mills' definition includes a concern for
productivity.

There exists a direct relationship between cost/effort
estimation and productivity. Righ productivity implies a faster
conversion and thus low effort measurement while low productivity
implies a slower conversion and high effort measurement. This thesis
research separated the two measures to analyze each individually and
then synthesized the results. This chapter divides the literature

review into two sections, one for effort estimation and the other for

productivity.

28

Little research with software conversion effort estimation and

software conversion productivity has been reported in the literature.
Therefore, effort estimation and productivity research for new
software development was included when it contributed in some way to

the study of the parallel topics in software conversion.

Cost/Effort Estimation

The definition of software engineering economics provides a framework
for the study of conversion effort/cost estimation[Fernandez, 1982]:
The application of mathematical and managerial techniques to
the design and development of software products to derive good
cost and schedule estimates which compare favorably with the
actuals.
To make this definition more applicable, one can change the term
"development” to "development or conversion.” Good effort/cost
estimates are critically important issues of software conversion.
Estimation is typically preceeded by the term "cost"; however,
authors are often quick to point out that they are really discussing
"effort" estimation and that an "effort" estimate becomes a "cost"
estimate by multiplying it times the average manpower cost of the
organization. The ensuing discussion will use the terms "cost" and
"effort" interchangeably with "effort" being the preferred term. If
costs are being specifically addressed then "cost estimation" is the

more appropriate term.

B |

Software development models typically yield estimates that are
very different from those of conversion effort models. Wolberg
presented a comparison of a conversion effort prediction model and
two software development models revealing that coaversions require
much less time than development projects{Wolberg, 1981]. This
discussion is primarily oriented to recoding since Wolberg considers
redesign projects to be similar to new development projects and
reprogramming projects to require approximately half the effort of
new development[Wolberg, 1983]. A conversion study may review
software development estimation models to search for directions for

analysis but not to select an applicable model.

Basic Estimating Concepts

Effort estimating techniques can be divided into three categories or
methods[Federal Conversion Support Center, 198la]:

1, Experience Method.

2. Task Analysis.

3, Parametric.
The experience method is primarily based on expert judgement while
task analysis pertains to a method which utilizes a handbook approach
to estimating. The parametric method refers to the use of single or
multiple variable equations in estimation. The models studied and
developed in this research are of the parametric type.

Dunham and Kruesi divide effort estimating models into two basic

categories: total cost and cost distribution[Dunham and Kruesi,

30

1983]. Total cost models are simply those of parametric type. Cost
distribution models differ with total cost models in that they focus
on resource expenditures over time. Putnam's model is an example of
such a type as it predicts time-dependent parameters[Putnam, 1980].
With conversion times a great deal shorter than those for software
development, total cost or parametric models are more appropriate for
this research.

When developing a parametric model, it is important to recognize
the influence of the organizational environment[DeMarco, 1982;
Wolberg, 1983]. Published models typically only provide an initial
"ball park" estimate that must be adjusted for each
organization{Wolberg, 1983]. The organizational sens. tivity of
estimation may be 1lessened by developing models based on
organizational data.

Parametric models generally use lines of code as one of the
major parameters, if not the only parameter. DeMarco related that
the most serious objection to using lines of code in a model is that
one cannot count lines of code at the beginning of a development
project; the count has to be estimated[DeMarco, 1982]. This
objection does not apply to conversion estimation models since a
count of lines of code is always available at the start of the
project.

Oliver, a proponent of the task analysis method, criticized
parametric models as worse than useless[Oliver, 1978]. It is obvious

that Oliver has had some bad experiences which influenced his

31

comnents. This thesis research studied some effort estimation

parametric models which were found to be quite adequate for the Phase

IV environment.

Conversion Effort/Cost Estimation Models

The FCSC conducted an extensive study of conversion cost/effort
estimating technigues and models[Federal Conversion Support Center,
198la]. All were found to be inadequate for one reason or another.
Therefore, the FCSC developed a parametric model with a foundation of
a work breakdown structure incorporating some of the better elements
of existing models. The initial version of the FCSC model was
formally called FCSC Hybrid Conversion Cost Model. After some
experience with the model, another version was developed and
documented in a subsequent report{Federal Conversion Support Center,
1982a].
The FCSC model provides estimating methods, formulas or

guidelines for the following conversion tasks:

1. Conversion planning and analysis.

2. Work package identification and preparation.

3. Test data generation.

4. Application program and system socftware conversion.

5. Data file and data base conversion.

6. Operation control language(OCL) conversion.

7. System testing.

8. Redocumentation.

9. Acceptance testing.

10. Conversion management and administrative overhead and/or
contract administration and support.

11. Miscellaneous resource estimating and costing.
The details of the estimation procedures for each of the tasks are
included in Appendix A. Though the entire model is presented here,
only those tasks that parallel those used in the Air Force Phase IV
program will actually be included in this research. Basically, the
tasks of primary interest are those numbered 3 through 9 above.

The Hahn and Stone model appears to be the earliest attempt to
develop a conversion parametric effort/cost estimation method[Hahn
and Stone, 1970]. The model defines three cost categories of
interest: ‘

1. Cost of transferring programs.

2. Cost of transferring data.

3. Other costs.
The major portion of the model deals with the cost of transferring
programs with the main emphasis being placed on the costs of manual
conversion or recoding. The details of the model are provided in
Appendix A.

Grim, Epler and Andrus studied Air Force conversion cost
estimation and found no comprehensive method available[Grim, Epler
and Andrus, 1978]. They developed a model which addressed the
following costs:

1. Application program conversion.
2. Data conversion.
3. Operating procedures conversion.

4. Other costs.

The cost of converting application programs was subd Lded into costs
for analysis, programming, manpower and machine use. The programming
cost estimation method received the most attention. The details of
the Grim, Epler and Andrus method are included in Appendix A.

The AFASPO suggested a slightly modified version of the Hahn and
Stone model for use in the Phase IV program[Air Force Automated
Systems Project Office, 1982al. Only the software conversion cost
estimation guidelines were included. Also, the details of the model,
found in Appendix A, reveal that only COBOL to COBOL conversions are
addressed since the majority of Phase IV conversions are of this
type.

Wolberg analyzed nine Rand Information Systems(RIS) conversion
projects and developed a regression model for estimating effort based
on lines of code[Wolberg, 1983]. Though not stated by Wolberg, the
model was actually based on only the seven projects which were high
level to high level language conversions. This became evident when
the RIS data was subjected to regression analysis to determine the
Rz(coefficient of determination), which was approximately O0.61. In
addition to a recoding estimation model, Wolberg also suggested
models for reprogramming and redesign. It should be noted that the
RIS data included total ©project times, from planning to
implementation. Details of Wolberg's models and methods are included

in Appendix A.

34

Development Models of Interest =«

Boehm developed some cost estimation models for new development
efforts which he extended for use in conversion projects[Boehm,
1981]. Boehm suggested using his models for conversion by applying
specific cost driver factors and considering conversion as an
instance of adaptation of existing software for a new application.
He recognized the limitations of this approach when he encouraged the
reader to review the work of the FCSC for cost estimation models.

Najberg was commissioned by the Air Force Electronics Systems
Division(ESD) to perform an analysis of the resource and schedule
estimates for the Air Force Phase IV Program[Najberg, 1981]. He
obtained estimates, mostly of expert 3judgement type, from the
organizations(MAJCOMs) to be involved in Phase 1IV. Using ESD's
Standard Parametric Software Cost Estimation Model(SPSCEM), Najberg
calculated conversion effort estimates and compared them to those
submitted by the MAJCOMs. The results showed that there were great
differences between the two estimates. The SPSCEM calculates
estimates using the average of four software development effort
estimation models. Najberg stated in a private interview that the
SPSCEM model is being completely revised since the results obtained
were not acceptable[Najberg, 1983].

Basili and Freburger also performed an analysis of 15 software
projects developed for NASA/Goddard Space Flight Center by Computer
Sciences Corporation{[Basili and Freburger, 1981]. Though the

projects were all new development efforts, the concept of reused code

35

used in the study might have some applicability to conversion
efforts. One of the equations, derived from the data, used the
number of developed lines of code(DL) as the predictive variable for
man-months of development effort(E). DL is a derived quantity equal
to the number of new lines of code(total lines minus reused lines)

plus 20% of the reused lines(all line counts are in thousands):

DL = NL + 20%(L - NL)

where
NL = new LOC; that is, not reused code
L = total LOC

L-NL = reused code.
This predictor variable(DL) was used by Basili and Freburger to
derive an equation for effort estimation:

E=1.48 * DLO'98

The research conducted by Chrysler was a unique study of
deve:arment time as affected by processing characteristics of
programs and experience characteristics of
programmers[Chrysler,1978]. Chrysler developed a regression equation
with only five of the 60 variables hypothesized to have an impact.
The utility of the predictive equation is limited somewhat by the
details of the program that must be estimated for use of the
equation. The result of major interest is really the fact that a
researcher has studied the significance of both programmer and
program characteristics in estimation or prediction of programming

time.

36

Jeffery and Lawrence developed equations for predicting
programming time(coding and unit testing) based on the data from
three different organizations[Jeffery and Lawrence, 1979]. The
independent variable used was procedure(COBOL) lines of code and the
equation coefficients were significantly different for all three

organizations.

Software Conversion Productivity

There are several studies in the literature which relate to
productivity though none of these is in the area of software
conversion. The general concepts, definitions, and measurements
involving productivity are applicable to software conversion;

therefore, significant work in this area is discussed.

Productivity Measurements

There is some debate in the literature over the selection of an
appropriate measure of program development or programmer
productivity. This is exemplified by Johnson's paper in which he
related that the measure of 1lines of code is the "“only usable
measure” of development productivity[Johnson, 1977]. He also
exposited the concept that productivity is only productivity if it is
measurable. There are variances in how LOC are measured and reported
so understanding the underlying definitions is fundamental. Precise
definitions of programs, man-days and LOC are necessary to avoid

difficulties in reporting and comparing productivity.

37

38

Johnson used Brooks' categories of programs to explain the
inherent differences in the levels of complexity of programs under
development [Brooks, 1975]}. It is important to define one's level of
program complexity when discussing productivity rates. A distinction
must be made between productive and nonproductive time. Also
requiring clarification 1is whether design time is included in
computing LOC rates. If these rates are based only on
programming/testing time, the result could be twice the rate that
would result if all phases of the project were included. The last
definition requiring clarification is that of LOC, since there are

various ways of counting source statements. LOC could be the total

of all source statements, comments and job control statements, COBOL
Procedure Division statements or various combinations.

Jones presented the unit of cost of programming as an alternate
measure of productivity[Jones, 1978]. He discussed two measures of
programming productivity: speed and cost. The units of measure of
programming speed he called work units since they related to the
speed at which a programmer works, The primary example of a work
unit is the typical measure of lines of code written per programmer-

month. Cost units are units of measure of programming cost and a

significant cost unit is that of programmer-months of effort per
thousand lines of code.

Jones related some problem areas in using lines of code per
programmer-month; e.g., sensitivity to line-counting wvariations,

ineffectiveness for noncoding tasks and attention focusing on the act

of coding of a program, which is a misdirection, since this is but a
small part of the total effort required. It appears to this
researcher that cost units will still be sensitive to line counting
variations and that the calculations of cost units for noncoding
tasks add a degree of confusion to the process. In addition, the use
of work units, as called by Jones, are still exceedingly popular even
in cases where reused code plays a great part.

Crossman presents another alternative to measuring programmer
productivity[Crossman, 1979]. He encountered numerous difficulties
in attempting to measure programming productivity especially because
of the many subjective assessments that must be made in the process.
It was decided to try to measure the number of functions within a
program, with function defined as a section of the program that
performs only one activity, conforms to the permitted logic
structures of structured programming including one entry and one exit
point and has about 5 to 50 source statements. It also appears that
the number of paragraph names in the program is a very good estimate
of the number of functions.

A problem with this entire effort is the variations in the
definitions of functions. Also, so much work has been done with LOC
that it may be useful to take the number of functions calculated and
derive a figure for LOC that could then be used as appropriate,

Further research with the concept of functions seems necessary.

39

Productivity Studies

The productivity measurement and estimation study of Walston and
Felix is one that is continually cited in the literature[Walston and
Felix, 1977]. They mention that their research was geared towards
measuring the overall productivity of projects and not that of
individual project members. The definition of LOC is the count of
source records input to a language processor including job control
language, data definitions, 1link edit language and comment lines.
Reused code is not included; however, no definition is provided for
reused code to determine exactly what is excluded. Effort 1is
measured in man-months required by the project, including management,
administration, analysis, operational support, documentation, design,
coding and testing.

The programming productivity measure used in the study was the
ratio of delivered source LOC to the total effort in man-months. A
set of 68 variables was selected and analyzed against the data base
to determine which wvariables were significantly related to
productivity and the result was that 29 variables, including
programmer experience, showed a high correlation with productivity.

Chrylser expanded the study of productivity by hypothesizing
fifteen program characteristics and five experience characteristics
of programmers as being associated with incrcases in programming
time[Chrysler, 1978]. The log,, ©of programming hours for sample
programs was regressed against the 10910 values of program
characteristics and the following program characteristics which were

found significant at the 0.05 level or less are:

40

r'"_—-—'_—_—'—'—"—'—"‘—'—"ﬂ

4l

output fields and output records
control breaks and totals

input fields, files and records

output files and report formats

mathematical operations

output fields without corresponding input fields

Again, the log of programming hours was regressed against the
10 ¢ P

log,, of each programmer characteristic. Years of formal education

and age were also used in the regression. All these characteristics

vere found to be significant at least at the .005 level:

*

*

age in months e

total months of experience programming

months of experience with business applications

months of experience at this facility

months of experience programming with COBOL compiler in use
at this facility

months of experience programming with COBOL compilers

years of formal education.

Chrysler's results indicated that each of the experience

variables showed a significant relationship with programming hours.

The age variable seemed to be a statistical repository for the

cumulative impact of all the experience variables since it exhibited

the strongest correlation with programming time probably because age

showed a

strong relationship with each of the experience variables.

The formal education variable, though significant, is too general and

it should take into account the type of education or curriculum.

42

Chrysler then consclidated the program and programmer
characteristics, as discussed earlier, and produced a predictive

equation for development time using the stepwise regression program.

With only the following five variables in the equation, the multiple
correlation coefficient was 0.836:

* programmer experience at this facility

* number of input files

* number of control breaks and totals

* number of input edits, and

* number of input fields.

A parallel study, which dealt with programmer performance,
investigated ‘program and programmer factors which were
significant[Schneider et al. 1981]. Two subpopulations of
programmers appeared from the sample data:

Novice: £4 computer science courses and <3.0 GPA
or <2 years programming experience

Expert: 27 computer science courses and 23.5 GPA
or 25 years programming experience.

A measure of performance was selected and the best predictor of
the experts’' performance was found to be the number of years of
programming experience. For novices, the best predictor model
included the number of computer science courses taken and computer
science grade point average. The performance differences found
between the two groups of programmers demonstrated that productivity

is not only dependent upon program complexity but also on the

43

interaction that arises between program factors and programmer
attributes.

Paulsen studied the relationship of productivity to program
composition and program size[Paulsen, 1981]. Productivity was
measured in terms of changed source instructions(CSI) produced in one
person-year(PY) because most of the products developed by her
organization, Santa Teresa Laboratory(STL), are modifications and/or
enhancements of existing IBM products. CSI includes new as well as
modified lines of code for the total product(TSI).

Paulsen's study of STL product development revealed that when
productivity is plotted against the ratio(CSI/TSI) of changed source
instructions(CSI) to the total number of statements(TSI), a convex
curve results. When the CSI/TSI ratio is less than approximately
0.50(that is, the reused code 1is greater than 50 percent),
productivity has a positive slope. When the CSI/TSI ratio is greater
than approximately 0.50(that is, the reused code is less than 50
percent), productivity has a negative slope. The increasing slope of
productivity when the percentage of reused code is high is due to the
fizted overhead effort involved in handling a program. As (CSI
increases within this range of reused code, productivity(CSI/PY) will
increase because more lines of code will be changed within the time
expended which is dominated by fixed overhead effort. When the
percentage of reused code is low and the number of CSI increases, the
overall effort involved is no longer dominated by the initial fixed

overhead effort. Therefore, within the range of a lower percentage

e |

of reused code, productivity decreases as the number of C(CSI

increases. Since compatible language conversions can be considered
to have a high percentage of reused code(code translated
automatically), it is not entirely unlikely that productivity will
increase with lines of code. This was true of the Air Force data but
it can not be concluded to apply to conversions in general. The
overall result of Paulsen's study was that productivity was affected
by program size and by the amount of reused code. No consideration
was given to programmer attributes.

Basili and Freburger's study mentioned earlier found that
productivity increased as the percentage of reused code
increased[Basili and Freburger, 1981]. This is intuitively clear
since the reuse of code should be less expensive than creating the
code from scratch. In this study, productivity was measured in terms
of the total number of delivered lines of code(expressed in thousands
of 1lines) which included data definitions, comment lines and source
statements which served as input to a language processor. The
denominator of the productivity ratio was total effort which was
defined as the total number of man-months of effort used on a
project, starting when the requirements and specifications become
final through acceptance testing. Effort includes programming,
management and clerical time, such that, one man-month of effort is
defined as 173.33 man-hours.

Basili and Freburger presented a productivity model they
developed from their data base. They defined productivity as a

function of the ratio of new lines of source code to total delivered

I |

lines of code without any consideration of program complexity or
programmer attributes:

P = 698*RNTOL " 7> where:

RNTOL = ratio of new lines of code to total delivered lines

of code.

This model suggests that productivity is lowest when there is not
reused code. Although Paulsen's data was from a very unique
environment, Basili and Freburger's model results parallel those of
Paulsen where the number of changed statements were over 50% of the
total product([Paulsen, 1981; Basili and Freburger, 198l1]}.

Lawrence conducted an expanded study of productivity as it
related to the programming environment, programmer experience and
programmer methodology[Lawrence, 1981]. From earlier evidence,
Lawrence concluded that 1lines of code was a reasonable measure of
output to use in a productivity metric. Productivity is defined as
PL/T where PL is the number of procedure LOC and T is the total time
in man-hours put into the job by the programmer from the receipt of
program specifications to the completion of program testing. Comment
lines were excluded from the count of PL.

The study concluded that there was no significant difference in
the productivity of the four industry groups studied: semigovernment,
banks and insurance, manufacturing and mining, and software houses.
However, the results indicated that some organizations were obtaining
significantly higher productivity than others. The results also

showed that trainee programmers have a lower productivity than

intermediate and experienced programmers; however, no observable
difference was seen between the intermediate and experienced groups.

The regression analyses revealed that the inclusion of becth
organization-identity variables and program and programmer variables
provide a 50% increase in Rz(coefficient of determination) compared
with either set of variables taken by themselves. The results
indicate that there are organization environment variables that, if
identified and measured, could lead to a better regression equation
for productivity.

Jeffery and Lawrence performed an inter-organizational study of
programming productivity[Jeffery and Lawrence, 1979]. Twe o©f the
three organizations showed that productivity was moderately
correlated with experience(measured by years on the job) while the
third organization showed no such correlation. This counter-~
intuitive result was recognized by Jeffery and Lawrence who offered
two possible explanations for the result: (l)after commercial
programmers learn their craft, additional experience makes 1little
difference, and (2)an inverse experience or skill relationship exists
as the better programmers are promoted quickly to systems analysis or
management, leaving the less skillful programmers as those with the
greater number of years of experience. There is nothing in their
sample data that provides a specific reason for this result. It is
interesting to note that this study was the only one reviewed that
exhibited this counter-intuitive result which indicates that a

measure of experience, other than years on the job, may be necessary.

46

47

Programming time and program size were found to be highly
correlated. It is significant that despite major differences between

the organizations studied, the equations developed for programming

time were very similar, both in terms of the model and the
coefficients. Organization three exhibited a positive correlation
between productivity and procedure LOC indicating that productivity
rises as program size rises. This sc.emingly counter-intutive result
was perhaps due to the programming style at organization three which
was observed to have a tendency to reproduce sections of code rather
than packaging the code as modules and using call and perform
statements. There is a clear parallel between the style of
organization three and software conversion where 1large sections of
programs are converted by an automatic translator. This supports the

results of this thesis research which show that productivity rises

with program size for the Phase IV conversion sample data.
Wolberg stated that estimation is a "tricky" procedure because
of the many variables affecting productivity[Wolberg, 1983]. Using
the effort equation he developed, Wolberg formulated a model for
productivity(P) measured in lines per day. The effort equation was:
E=7.14 * Lo'”

Assuming 22 working days per month, productivity is calculated as:
P = (L*1000)/(E*22)

which results in the following:

p=6.37 » 1033

Wolberg reiterated that his effort equation is based on man-hour
data that included all the staff time used in the RIS conversion
projects. Therefore, his productivity measure should be treated as
an estimate of total productivity with all project hours included;
i.e., planning, data preparation, conversion, testing,
implementation, documentation, etc. It is important to realize that
to use productivity measured in programmer hours only, to develop a
project budget, would be a grievous error.

Since many of the software development and software conversion
cost estimation models include productivity estimates in their
equations, valid preductivity measures are a major concern. This
thesis research is geared towards studying the factors that affect
productivity rather than to determining another productivity measure.
Examples are the statements by Oliver that knowledge of the
application is not critical in performing the conversion and that the
programmers of a system may be the worst qualified to convert it
since they may not resist the temptation to "improve"” the system
while converting it[Oliver, 1978].

Jeffery and Lawrence provide a summary and discussion of the
apparent inconsistencies of prior productivity research results and
definitions[Jeffery and Lawrence, 1981]. All studies reviewed,
except that of Jeffery and Lawrence, concluded that experience
significantly influenced development time[Jeffery and Lawrence,
1979]. In this one case of Jeffery and Lawrence only one of three

organizations showed no corre'ation between experience and

48

—

development time and they point out that this could be due to the
rapid promotion of good programmers to levels of management which
would produce a group of programmers whose years of experience might
not reflect their level of skill. Johnson's study, which does not
include reused code, revealed that productivity declined on the
average as project size increased[Johnson, 1977]. On the other hand,
Jeffery and Lawrence's and Basili and Freburger's studies, which
included reused code, found that, on the average, productivity
remained relatively <constant as the size of the project
changed[Jeffery and Lawrence, 1977; Basili and Freburger, 1981].
Paulsen's work showed that when the amount of reused code is
approximately 50% or more, productivity has a positive slope but when
the amount of reused code 1is between 0 to approximately 50%,
productivity has a negative slope, thus productivity is depicted as a
convex curve with the high point relatively close to 50% reused
code[Paulsen, 1981]. This phenomenon explains why Walston and
Felix's study of IBM systems, with much reused code, revealed that
productivity increased as the percentage of reused code
decreased[Walston and Felix, 1977]. This alsoc indicates why Basili
and Freburger's work, which included less than 50% reused code,
showed productivity decreased as the percentage of reused code
decreased[Basili and Freburger, 1981]. Paulsen stated that products
with few new or modified LOC(small size) tended to have lower
productivity because of what she called the fixed cost overhead. In

the area of software conversion where the source and target languages

49

-

are very similar, the amount of "reused code" is close to 100% so it
is logical to expect productivity to increase somewhat as the size of
the program increases.

Differences also exist in the independent variables selected for

the research. For studying programming productivity, the concern is
for the time spent by the programmer and Jeffery and Lawrence
included only the hours recorded from receipt of program
specifications to delivery of tested code[Jeffery and Lawrence,
1979]. Walston and Felix included time from the inception of a B
project to its implementation while Basili and Freburger included
management and clerical overhead with programming effort. Wolberg's
conversion effort study also included time from the administrative
initiation of projects until final implementation[Wolberg, 1983].

The apparent lack of consensus in the literature is primarily
due to differences in terminology, in the sample data, and in the
specific variables being considered by the researchers. One element
of new development research which requires strict definition to
increase the commonality of the various studies is that of reused
code. Also requiring clarity are the studies' definitions of LOC and
programming time. Although there appear to be no apparent
differences in the productivity of the industries studied by
Lawrence, the results indicate that some organizations are achieving

significantly higher productivity than others[Lawrence, 1981]. This

thesis research shows that program size, programmer experience,

program complexity and organization have a definite impact on the

conversion productivity of programmers.

51

CHAPTER 1V
AIR FORCE PHASE IV PROGRAM

Since the data for this research is being provided by the Air Force,
it is fitting to include a detailed presentation of the Air Force's
computer replacement program called the Base Level Data Automation
Program and officially short-titled Phase IV(fourth contractural
agreement for base level data automation support). This not only
assists in the discussion of the general area of software conversion
but also provides an analysis of the environment from which the

software conversion sample data for this research is drawn. '
Program Prescription

The Air Force Phase IV Data Project Plan provides an overview of the
program since its inception[Air Force Automated Systems Project
Office, 1982b]. The Phase IV Program was established in April 1976
to modernize existing base level computer hardware systems. The
formal requirements specifications, Data Automation
Requirements(DAR), for the Program were completed in September 1976
and submitted for certification. The Assistant Secretary of the Air
Force for Financial Management(SAF/FM) granted the conceptual
certification in October 1976.

In February 1977, the SAF/FM was designated the source selection

authority(SSA) and in April 1977 the Air Force Automated Systems

Project Office(AFASPO) was chartered to function as the Phase IV

Program Manager. The SAF/FM granted definition certification in
March 1978 and the performance specifications for the regquest for
proposal(RFP) were completed in April 1978. The General Services
Administration granted Delegation of Procurement(DPA) to the Air
Force in August 1978 and with the SAF/FM's approval the RFP was
released in December 1978.

In April 1979, the GAO began a review of the Phase IV Program as
requested by the Chairman, House Government Operations
Committee(HGOC). Hearings were held before this Committee while RFP
responses were being received and evaluated. In October 1979, the
GAO released its report of findings which was critical of several
elements of the Program and recommended that it be canceled. In
November 1979, GSA suspended the DPA pending action by the HGOC. The
Air Force immediatedly responsed to the HGOC detailing significant
weaknesses in the GAO's analysis and presenting a strong case for
continuing the Program. However, the HGOC accepted the GAO's
recommendation requesting that the Air Force consider establishing
regional centers instead of doing an across the board replacement of
all existing computers. In Januvary 1980, GSA and the Air Force
agreed on a redirection of the Phase IV Program.

The DPA was reinstated in April 1980, after the HGOC reviewed
the Program redirection. Contract negotiations were resumed and in
December 1980, Burroughs and Sperry-Univac Corporations were awarded
contracts to competitively transition a set of software systems and

demonstrate adequate performance on their own hardware. In October

52

53

1982, an operational test of the contractors' hardware and converted

software was initiated. A study of the results lead to a decision in

January 1983 to award the Phase IV contract to Sperry-Univac.
Phase IV Materialization

About 150 new computers(Sperry-Univac 1100/60) will replace over 225
base level computer configurations of Burroughs B3500/3700/4700 and
Sperry-Univac Ul050-II computers. The Burroughs machines support
such functions as finance, procurement, personnel, etc. while the 2
Univac 1050-II's support the base supply function. The hardware
installetion and software conversion and implementation is being
accomplished in two increments. These increments are referred to as
the X1 and X2 workloads. The X1 increment involves the replacement
of the Univac 1050 systems with associated software, while the X2
increment involves the replacement of the Burroughs machines and
associated software.

Sperry-Univac is responsible for converting about 20 standard 1
software systems(l.5 million LOC) while about 25 Air Force
development centers(primarily major air commands) are responsible for
converting about 300 software systems(3 million LOC) that are unique.

One of the objectives of the Phase IV Program is to extend the

data processing support of base level users through the 1990's by

acquiring upgradeable/expandable hardware from a single wvendor's

family of equipment. Phase IV planners are expecting the useful life

of the Sperry-Univac equipment to be 12.5 years from installation. &

12 year economic 1life was used for costing purposes with the
remaining half year being used for the removal and disposition costs
of the equipment. For life cycle budgeting, Phase IV permits two
negotiated contract extensions with Sperry-Univac for a possible
total of about 20 years under one ADP Program. The life cycle cost
estimate for the Phase IY Program(in 1977 £fiscal year -constant
dollars) is $2.3 billion while the net impact on the Air Force budget
is a life cycle cost decrease of about $350 thousand indicating that
Phase IV is actually going to save money.

There will be 63 single system bases, 28 dual system bases(56
computers) and 14 regional centers¢27 computers). In addition, two
X2 workload systems will be installed at the Defense Mapping Agency

and there will be two transportable systems.
Conversion Assistance, Tools and Procedures

The Air Force Automated Systems Project Office(AFASPO), having
primary responsibility for managing Phase IV, developed a guidance
package to provide Air Force major air commands(MAJCOM) and Separate
Operating Agencies(SOA) with information needed to effectively plan
and accomplish their software conversion efforts{Air Force Automated
Systems Office, 1982a]. A&n understanding of the guidance/information
provided in this package permits one to appreciate the environment
within which the conversion is taking place and uniquely defines the

data used in this research.

54

55

The AFASPO guidance package called for the MAJCOM/SOA unique
software to be converted as follows:

1. COBOL -~ Automatic recoding, as defined in this dissertation,
of Burroughs extended COBOL-68 to Sperry-Univac COBOL-74 will
be accomplished with a Sperry-Univac automatic translator of
90% effectiveness rate(minus the ENTER verb). Manual
recoding will be applied to complete the task.

2. FORTRAN -~ No automatic translator was thought to be necessary
because of the small number of FORTRAN programs SO manual
recoding is to be used.

3. Burroughs Assembly -- All systems written in Burroughs
Assembly are to be converted by means of reprogramming, as
defined in this dissertation.

4. AFOLDS —- Air Force Online Data System(AFOLDS) programs will
require only minimal manual recoding since the contractor is
to convert the AFOLDS such that it accepts currently existing
programs.

Ten Sperry-Univac computer systems will be available throughout
the country to support the conversion effort of the 29 MAJCOM/SOA
development centers. Each center was assigned to a specific system
for the conversion effort which would thus be started z.ior to the
installation of the new equipment at most sites.

The contractor is also supplying utilities to convert data files
from the existing machines to the Univac 1100/60. Also included are

utilities necessary to validate the data files converted.

56

The Air Force is to provide to all development centers the
following tools:

1. Percent Execute —- This system inserts probes in a COBOL
program to monitor its execution. It is used to determine
what parts are being executed by a given data set, thus
permitting the development of more complete test data sets.

2. Documentation Aids -- The current language processors plus the
COBOL and Assembly concordance tools provide variable usage
and cross reference information. In addition a flow chart
generator is provided for COBOL programs.

3. Phantom Paths -- This tool isolates "dead" code which cannot
be reached and which can be deleted since it serves no useful
purpose.

4, Burroughs Filter -- This tool is used to identify code which
has a high probability of not translating to the new
equipment and thus should be removed if possible.

5. Automated Compare -- Automatic comparison of files, as
mentioned above, is provided.

Testing procedures require that the functional equivalence
between the original and converted code be proven by means of visual
verification of output.

The guidance package calls for preparatory or pre-conversion
tasks, to include the following:

1. Removal of "dead" code. Phantom Paths may be used to

facilitate the isolation of this code.

2. Improvement of code by replacing complex source code with
simpler code and removing verbs which have a high probability
of not converting automatically. The Burroughs Filter may be
used.

3. Identification of problem code and removal if possible. Some
segments of code which are in this category are: code
sensitive to changes in collating sequence, code which uses
Burroughs extensions or assembly language and code which
relies on special operating system or hardware features.

4. Improvement of documentation. Documentation standards must be
followed and a set of standard documents must be available to
support the conversion of each system.

Resource estimation, a pre-conversion task, was to Dbe
accomplished using the Hahn and Stone model as modified by the Air
Force or an Air Force devised average method[Hahn and Stone, 1970].

These are discussed in Appendix A,

Initial Conversion Experiences

Sperry-Univac converted an initial system of 26 COBOL-68 programs.
This conversion was analyzed by the Air Force and this led to the
AFASPO STC 404 report which includes much useful information for the
remaining conversions[Air Force Automated Systems Project Office,
Undated]. Some assumptions listed are the following:
1. The recoding of major command software will be strictly
recoding with no improvements. Allowing modifications during

conversion increases risks.

57

2. New capabilities offered by the target environment will not be
exploited during the conversion. This is again to minimize
risk.

3. The format, structure and medium of all input and output files
will not be changed until the software has been transitioned
and successfully implemented.

4. All source and data files on the éurroughs systems will be
copied to tape using the File Management System(FMS). The
Univac 1100/60 has the capability to process these FMS tapes.

It was discovered that the bulk of the existing documentation
for Burroughs systems could effectively be transferred to the new
environment . Most of the changes needed applied to the operators
manual and the majority of these changes related to job control
language and Burroughs terminology. Very few changes were necessary
for the users manuals. All these changes can be highlighted before
the conversion so that changes can be made easily.

The evaluation of this initial conversion process reveals that
all programs increased in size after going through the translator and
even more after the manual recoding of the source lines that were not
automatically translated. The increase in program size is typical of
what can be expected by conversion programmers. A 28,569 line system
that was recoded by a contractor, using automatic and manual
translation from B3500 COBOL-68 to Sperry-Univac COBOL-74 was
analyzed. An increase of over 20% to 35,279 lines of code was

discovered. The Air Force plans to improve the efficiency of these

58

59

converted programs only after the initial effort is completed and the
converted programs compile and produce the required output. This
approach is both less costly and less risky. Following this type of
approach, if the resulting system operates as specified within the
allowed time and space constraints nothing further needs to be done
to the code.
The discussion above refers primarily to a contractor's early
experience. This thesis research is concerned with an analysis of
early conversion experience data of Air Force programmers. -
Subsequent chapters relate the data encoding and analysis performed

along with the results obtained by this study. .)
Conversion Effort Data Collection

Since all of development or conversion centers are scattered
throughout the country (two are outside the continental United
States) and function somewhat independently, an automated method of
collecting data was infeasible. Therefore, data was requested in raw
form using AFASPO developed instruments or forms which were completed
and forwarded to AFASPO. The basic requirement was for conversion
centers to submit a monthly report to the AFASPO detailing the number
of manhours expended for pre-conversion, conversion and post-
conversion tasks[Air Force Automated Systems Project Office, 1982a]. ;
The monthly report format was subsequently changed to one which
requests a percentage of completion be provided for each system the

center is converting.

Of primary interest to this research is the AFASPO letter which
requested that programmer resumes for all conversion programmers be
provided in the format specified(Figure 1)[Air Force Automated
Systems Project Office, 1983]. Each program converted was to be
detailed in a program information form describing the program and the
effort required to convert it(Figure 2). This data collection effort
began in June 1983 and is not due to be completed until late 1985.

The programmer resume form is very straightforward; however, the
information requested, in some cases, produces a variety of
responses, For this reason, an encoding scheme (presented in
Appendix B) was developed by this researcher to refine the raw data.

The program information form is also straightforward but it
requires some definition of terms. The "System Code", "DSD"(Data
System Designator), "System Title" and "Program Title" are all center
specific and pre-defined. The "Difficulty” description categories
primarily reflect characteristics of source programs that Sperry-
Univac had found to require manual recoding after the automatic
recoding of the automatic translator[Air Force Automated Systems
Project Office, Undated]. The sum of the number of difficulty
categories checked was used as a measure of program difficulty or
complexity. The "Switches" category recognizes that B3500 COBOL-68
software switches used in a VALUE statement are not available in
COBOL-74. The "Interrogate” category reflects the requirement to use
a different method to test for the presence of a disk or diskpack

file since the INTERROGATE statement is not available in UNIVAC

60

Figure 1. AFASPO Phase IV Programmer Resume Form

I. Programmer Coda

II. Education
College Graduate? Degree: Associatas Bachelors

Masters — mD

Major(s): Minor(s):

formal Instzuc=ion (in relation to ccmputer fSield):

III. Background

A. How many years experience do you have in the computer
f1e14d?

8. How many of these years are actual programming years?

C. How long have you Seen programming in COBOL 682
., QOBOL 742

D. Was this experience primarily i1n development or maiz-
tenance work?

Z. If the majority of programs you shall be transitioning
are not COBQL, then what type of system are they
and how many years experience do you have with them?

F. How much experience ¢o you have with transitioning?
Explain.

G. How much experience do you have 1n working with Job
Control Languages?

H. List any other experience which will aid you in tran-
s1tio0n1ng unique software to Phase IV.

le Generay
System Code
S0
System Titte
Program Titie

Qate Started Lines ot Code (Starr)

Date Compiered Lines ot Toge (Flaisn)
. Program
Ae Type (Cheex One)

E[Fortran E 3aren

EI AFOLDS E QA= ne

E Asseno| or

O csa

E other:

8. Ditticuity (Cheex esch one the grogram coatains)

E Sort E Reei /'3
G tlo E[Random 1/0
E Switches E Coey

(Livreries)
E Comp Oatra H Interrogate
T canr
1, Aetivity —lrograments) ,
Cocumenrerion ‘

Cara File Transter l l

AQS Tramsiation

Creste Contral Language

Tesr/Nedug

Misesl | snenys

Xnowiedge Code®

*Xacwiedge cote 13 In relstion ro knouiedge oF This program, Osaot ar all,
Sovery knowiesqeedie, Swwrare *he orogram,

Figure 2. AFASPO Phase 1V Program Information Form

Vannoyrs
Exoenqeq

COBOL-74. The "Reel #'s" category refers to the B3500 COBOL-68 USE
verb which specifies procedures for tape label handling such as reel
number extraction. This capability is not available in COBOL-74; the
CALL routine replaces this function. The "Zip" category indicates
that the ZIP verb which causes the Burroughs operating system to
execute a control instruction contained within the operating object
program is not available in COBOL-74 so it must be recoded. The
"Sort" category indicates great care is required when sorting is
called for because B3500 systems use the EBCDIC character set where
alphabetics appear before numerics while the Sperry-Univac systems
use the ASCII character set whose collating sequence is the reverse.
Logical compares, range checks etc., based on the EBCDIC segquence,
have to be recoded. The "Comp Data" category indicates that Comp
definitions are manually redefined as numeric fields. This has no
affect on arithmetic operations but will cause expansion of record
size and data item picture fields. On the B3500 there are two COMP
fields per word while the Univac 1100/60 has six fields per word.
Consequently, word boundary alignment problems could result if COMP
is not redefined. The "Random I/0" category indicates that when
random (or sequential)files are open for input/output, the WRITE
statement is replaced by a REWRITE statement. Also the entire I/0-
Control section is always flagged for manual recoding. The "COPY"
category flags the program as requiring access of the COPY library.

Subsequent action insures that the COPY executes correctly and the

library is available and correctly converted. The "Call" category

63

64

indicates the need for routines to be available and converted for the
program to execute correctly. Also, the ENTER symbolic statement in i
Burroughs COBOL-68 which provides the use of an alternate language
must be recoded. The COBOL-74 Interprogram Communication module,
which provides for CALL and ENTER statements to communicate with
other programs, must be used.
The first row of blocks of the activity matrix of the program
information form requests the programmer code as specified on the
programmer resume. The "Data File Transfer" accounts for the time -
required to dump program external tables and test data to tape from
the old system and its subsequent uploading on the Univac system.

This is typically insignificant since several data files may be

transferred at once quite easily. The "ADS Translation" accounts for
both the automatic and manual recoding of the program ("aADS"). The
automatic recoding effort may be quite insignificant since several
programs may be grouped and funneled through the automatic translator
which may require only a few minutes per program. The "Create
Control Language" category accounts for the time, in many cases
minimal, to establish the Univac job control statements pertinent to

the program.

The program information form contains wvarious program
characteristics which the programmer indentification code(s) links to
programmner attributes. These groups of data provide variables such

as those suggested by many of the researchers mentioned in Chapter 3.

k The programmer resume and programmer information forms provided

the basic data required for the productivity analysis and the

corresponding encoded data files are included in Appendix C and D
respectively. However, because of the distinction between system
level and program level manhour accounting and the nature of
cost/effort estimation models, additional data was necessitated. The
Air Force Data Systems Design Center(AFDSDC) and the Tactical Air
Command (TAC) provided system level manhour data which accounted for
most of the second stage(conversion) of the Phase IV effort within
each organization. Each record of this additional data, detailed in
chapter 6, contains a code for the organization and a system code

followed by lines of code, manhours and number of programs.

65

CHAPTER V

CONVERSION PROGRAMMER PRODUCTIVITY ANALYSIS

Introduction

The Air Force Phase IV software conversion effort data provided the
basis for this research. Before initiating the productivity
analysis, the programmer resume and the program information data were
viewed and studied separately. The separate data files were then
integrated, as appropriate, for further detailed analysis. The
objective was to study the impact of program factors and programmer
attributes on th; conversion productivity of programmers. A brief
discussion of the preliminary analysis(detailed in Appendix B) seems
appropriate before proceeding with the details of the productivity

study. A glossary of significant statistical terms used in this

thesis is provided as a reference.

Preliminary Analysis

The preparatory stage of the study required the formulation of an
encoding scheme for the raw data and the construction of both a
programmer resume file and a program information file. These two
files were analyzed separately by means of tabular summaries, Chi
Square tests and Factor Analysis. The initial Chi Square tests
revealed that recoding of some categorical variables was necessary
for the tests to be valid so changes to the original encoding scheme
were implemented. It was also discovered that most of the program

information data showed no man-hours for the first two activities,

66

documentation and data file transfer, since these two activities were

typrically handled at the system level. To improve the uniformity of
the data, the total effort hours for productivity analysis were
derived from summing only four of the six categories of the program
information form activity matrix. The details of this preparatory
stage and preliminary analysis are contained in Appendix B.

The programmer resume file and program information file were
merged to generate a productivity file of records containing both
program and associated programmer data. The program conversion
effort data, consisting of 130 programs all written in COBOL, came
from six different Air Force centers. In order to insure a precise
set of data for research where distinct relationships between a
programmer 's attributes and the conversion effort could be studied, a
subset of the productivity sample file was created. This subset only
contains programs converted by one programmer since group interaction
and group productivity are not considered in this study. The subset
only contains 51 programs and is titled the individual productivity

file. All work discussed uses the individual productivity file.

Definitions and Assumptions

Two items that have typically caused confusion in research on new
software development are lines of code and total man-hours used. For
this conversion research, STLOC(starting LOC) is used to measure the
size of a program before undergoing the conversion process. Comment

lines are included in the count but not job control statements since

i
i
i
)

no such statements are used by programmers in the B3500 base level
environment. SUMHR is used to measure the total number of hours
spent by a programmer in recoding a program (including time involved
in using the automatic translator), generating job control
Statements, testing the results, and related miscellaneous hours. As
mentioned above, the documentation and data file transfer activities
were not included in SUMHR because of inconsistencies in reporting.
The SUMHR definition generally parallels that of programming time
used by Jeffery and Lawrence[1979]. However, there is no clear
definition of what miscellaneous hours a programmer is legitimately
authorized to count. The definition of all other wvariables was
included in Appendix B but a brief statement of their meaning is made

in the next section of this chapter.

General Overview of Analysis Methodology

The framework for this analysis is a multi-step process embodied in
two basic stages. First, the variables, which resulted from the data
collection, uanderwent resolute cerebration which involved an initial
separate investigation of the categorical and continuous wvariables.
Secondly, the wvariables found to be significant were used as the
independent variables in regression analysis to develop a model which
might be useful in explaining productivity. The productivity measure
used as the dependent variable was lines of code per hour(LOCPERHR)
calculated by dividing STLOC by SUMHR for each program. Following

Jones' suggestion, hours per hundred lines of code(HRPERHLO) was used

68

as a dependent variable to provide parallel results for
comparison[Jones, 1978]. A natural log transformation of LOCPERHR

was also regressed as a dependent variable.

Selection of Relevant Variables

To clarify the starting basis for this section of the work, it is
appropriate to present a synopsis of the research variables. There
are basically two sets of wvariables: those describing the programmer
and others related to the program itself. An additional grouping of
the variables is by type; i.e., categorical(nominal) or continuous.
These two groupings provided a point of departure for ‘the analysis.
A description of all the variables including those subjected to

recoding are included in Appendix B.

Categorical Variakies Subjected to Analysis of Variance

Two variables of primary interest are DEGREE(level of college
education) and MAJOR (academic major). The value of DEGREE was
recoded to be one of the following: 0(no college), l(some college) or
2(college graduate). Those that have attended college and recorded a
major fall into one of four categories of MAJOR: O(none), l(other),
2(DP-MIS, Math, Science) or 3(Computer Science). Another wvariable
recoded was one describing the type of conversion experience(CONEXP).
CONEXP was permitted to take one of four values: 0(no experience),
l(some experience), 2(greater experience including any COBOL-68 to

COBOL-74 experience), and 3(early Phase IV experience). The values

69

of programmer experience type(PTYPE) maintained their initial

definitions: O(no experience), l(maintenance type), 2(maintenance
and development type), and 3(mostly development type).

All variables describing an individual's formal training were
defined as binary. A value of 1 meant that the individual had
training in the specific area of variable definition while a 0
signified no training. The variables in this group are: FTNG6
(COBOL-74), FING5(all other COBOL), FING4(AF Online Data System),
FTNG3(other programmer training), FING2(Sperry-Univac training), and
FTNGl(other general ADP training).

In the process of learning more about these variables, the
average value of LOCPERHR for each <categorical value was
calculated(Table 3). Then an analysis of variance model was formed
with all the above being explanatory variables and LOCPERHR as the
dependent or response variable. The SAS general linear model(GLM)
procedure was used for the analysis of this exploratory design. A
definitional aid for interpreting GLM output is provided in the
glossary.

The SAS results demonstrated an analysis of varianca(ANOVA) test
statistic(model F value) of 1.9 with a significance level of 0.0625
for the entire model. Given the null hypothesis that all the
coefficients(or contributions) of the wvariables equal zero(0), the
probability of rejecting a true null hypothesis(Type I error) is
0.063. Since the probability of Type I error is greater than the

generally accepted criteria of 0.0l or 0.05, one can not reject the

71

Table 3. Lines of Code Per Hour{LOCPERHR) Averages for Categorical

Variables.
Variable N Mean Variable N Mean Variable N Mean
MAJOR PTYPE CONEXP
0 40 79.5 0 10 86.3 0 45 63.1
1 9 37.1 1 4 20.5 1 3 228.3
2 1 24.4 2 19 37.6 2 0 -
3 1 21.4 3 18 105.5 3 3 10.7
DEGREE FTNG1 FTNG2
0 23 89.5 0 35 86.3 0 5 27.4
1 18 63.5 1 lé 33.5 1l 46 74.4
2 10 35.5
FING3 FTNG4 FTNGS
0 4 172.5 0 50 70.7 0 35 86.4 -
1l 47 61.0 1 1 21.4 1 16 33.3
FTNG6

0 48 59.9
1 3 228.3

null hypothesis which means that either the null hypothesis is true
or the data, for some reason, does not allow the detection of small
differences from zero. More pointedly, the partial F values for each
of the categorical variables were all less than 1 and no level of
significance was less than 0.5 meaning that the explanatory
contribution of each and every categorical variable was statistically
nonexistent; that is, one can not reject the hypothesis that the
contribution of each coefficient of the variables is O.

One reason for these results is the unequal cell frequencies of
categorical variables which implies the presence of
multicollinearity[Iverson and Norpoth, 1976]. GLM optionally
provides for the computations of tolerance values for each variable,

A tolerance value is the inverse of the variance inflation \

factor(VIF) which measures the combined effect ©f the dependencies
among the regressors on the variance of the term whose VIF is in
question[Montgomery and Peck, 1982]. One or more large VIFs
indicates multicollinearity and practical experience has demonstrated
that if any of the VIFs exceeds 5 or 10, poor estimation of
associated coefficients results. Several VIFs in the ANOVA model
were much larger than 10 indicating multicollinearity. In pure
analysis of variance work, contingency table tests of independence,
such as those described in Appendix B, are typically used to detect
multicollinearity[Iversen and Norpoth, 1976]. Only when the Chi-
Square value equals 0 is one assured of uncorrelated variables.

0f the metheds for dealing with multicollinearity, variable
elimination seemed to be the most practical[Montgomery and Peck,
1982]. This opened up the entire subject o©f variable selection
techniques and procedures where one can find clear signs of
Mendenhall's exposition that "the application of theory to the
solution of practical problems is an art and subject to
debate[Mendenhall, 1968]." Cox and Snell provide some basic
guidelines, useful for choosing variables in observational studies,
that are applicable to this work[Cox and Snell, 1974].

One criterion for choosing variables is for the available data
to be roughly evenly split across the 1levels of a categorical
variable in order for the effect on the response variable to be as
clear-cut as possible. variables which indicate high dependencies

and/or are considered alternatives are good candidates for

72

elimination because of multicollinearity and for reasons of

simplicity. 1Including too many variables in a model typically raises
the mean square error of prediction. 1If the objective of a fit to
data is primarily for prediction then two different models, involving
different wvariables, are equally acceptable if they fit the data
egqually well. Simplicity, in terms of the number of variables, is
the basis for choosing between these models, if necessary.

In terms of an adequate split of the data over the levels of a
variable, the best candidates for selection were DEGREE(level of
college education), PTYPE(programmer type), FTRGl(general ADP
training), and FTING5(general COBOL training). A possible second
place selection was MAJOR(academic major), with CONEXP(conversion
experience type) barely squeezing in for consideration because of its
natural significance in this study. Since the Chi-Square tests
recorded in Appendix B showed a significant level of association
between CONEXP and PTYPE, CONEXP and DEGREE, and CONEXP is really
inadequate in its data splitting over its 1levels, CONEXP was
subsequently excluded from consideration. Because both DEGREE and
PTYPE exhibited a significant association with FTNGl and it measures
a formal training area of little concern to this study, FTNGl was
also excluded. Since FTNG5 is significantly associated with PTYPE
and duplicates a couple of the continuous variables (C68EXP and
PGMEXP) and since COBOL training may already be associated with the
programmer 's academic education, FING5 was deleted as a candidate

variable. Even though MAJOR and DEGREE showed a highly significant

74

association, MAJOR was allowed to remain as a candidate variable to
provide for correspondence with other research. Care was to be

exercised in interpreting model results if both remained in the final

reduced model. In summary, the categorical variables chosen as

candidates for the combined model were PTYPE, DEGREE and MAJOR.

Continuous Variables Scrutinized

The continuous variables derived from the programmer resume file
include total years of ADP experience(TOTEXP), years of programmer
experience(PGMEXP), COBOL-68 years of experience(C68EXP), COBOL-74
« years of experience(C74EXP), and years of JCL experience(JCLEXP).
The productivity file also includes continuous variables from the
program information file. Of the two measures of lines of code,
STLOC(starting LOC) is the most appropriate for a predictive model
since FILOC(finishing LOC) is not initially available. The level of
difficulty or complexity of a program is significant for productivity
studies so a count of the number of difficulty categories checked by
the programmer (SUMDIF) was used in addition to lines of code(STLOC)
to further define the program. The knowledge code(KCA) of the
programmer for a specific program was reserved as a continuous
variable since it is an ordered variable which could very well have
intermediate values.
The process of selecting candidate independent continuous
variables follows the same basic pattern as that for categorical

variables. Multicollinearity, duplication of a variable, inadequacy

of data, and simplicity were used as criteria for candidate variable
selection. From the factor analysis and correlation matrix of the
preliminary analysis(Appendix B), one can vividly see the presence of
correlation between the experience variables. TOTEXP, PGMEXP and
C68EXP seem to provide very similar information and thus may not all
be required in a model. C74EXP and JCLEXP show some correlation but
not of the same degree as the other three variables.

An advantage of continuous variables is the availability of
automated techniques to assist one in variable selection. Stepwise
regression techniques have slight differences in their approach and
suitability. Montgomery and Peck stated that the backward
elimination algorithm is often less adversely affected by the
correlative structure of the regressors; therefore, it was chosen for
this variable selection[Montgomery and Peck, 1982]. The backward
elimination algorithm permits a variable to return to the mix
(forward selection) if it becomes significant after other wvariables
leave the mix(backward elimination). As suggested by Montgomery and
Peck, the partial F test level of significance for forward selection
was set at 0.25 while the level of significance for backward
elimination was set at 0.10[{Montgomery and Peck, 1982]. The
dependent variable was again LOCPERHR.

Using the SAS STEPWISE procedure for Backward Elimination, only
PGMEXP and TOTEXP were deleted from the list of variables with all
the remaining ones(STLOC, KCA, SUMDIF, JCLEXP, C68EXP and C74EXP)

being significant at the 0.007 level or less. Montgomery and Peck

75

warn that, though helpful, stepwise techniques 1like backward
elimination do not necessarily produce an optimal model since there
may be several models that are equally good. With this in mind and
to expand the scope of explanatory variables for the model, PGMEXP
was also included as a regressor to bring in the individual's general

and overall programming experience.

Model Variables Selected

In summary, the categorical variables of interest for starting the
regression analysis were DEGREE(level of <college education),
PTYPE(programmer type), and MAJOR(academic major). The continuous
variables for the initial model were STLOC(starting LOC),
KCA(programmer's knowledge level), SUMDIF(measure of program
difficulty), C68EXP(years of COBOL-68 experience), PGMEXP(years of
general programming experience), C74EXP(years of COBOL-74 experience)

and JCLEXP(years of experience with JCL).

Model Specification and Analysis

When building a model with both quantitative and qualitative
variables, one is in the statistical realm of analysis of covariance
which is a special case of the linear model. However, when
guantitative(covariate) and categorical independent variables are of
equal interest or the design is unbalanced, regression analysis is
not only equivalent to analysis of covariance it is also more

appropriate[Ahtola and Wildt, 1978]. Equivalency is obtained by

76

representing the qualitative variables by dummy variables. This is

easily done within the SAS GLM procedure by identifying the
categorical variables in the CLASS statement. The glossary contains
an aid for interpreting GLM output as presented in table form in this

chapter.
Initial Model Analysis

When performing the initial runs, it was discovered that GLM normally
sets the coefficient of the highest level of a categorical variable,
whether alphabetical or numerical categories, to zero and includes
its effect or wvalue in the intercept term. Therefore, for the
purpose of the regression analysis the codes for PTYPE, DEGREE and
MAJOR were reversed with the highest value becoming 1 and so on, to
allow these lower numbered 1levels, which were of greater
significance, to have specifically defined coefficients.

The initial model, with LOCPERHR as the dependent variable and
STLOC, KCA, SUMDIF, C6B8EXP, PGMEXP, JCLEXP, C74EXP, DEGREE, MAJOR and
PTYPE as the independent variables is shown in Table 4. The
coefficient of determination(Rz) shows that 77% of the variability of
LOCPERHR is explained by this model. The coefficient of
variation(C.V.) expresses the unexplained deviation remaining in the
data relative to the mean response. The mean square error(MSE) is
used as an estimate of the model's variance yielding root MSE as an
estimate of the model's standard deviation. The model's F value is

significant at 0.0001 indicating that at least one coefficient is

Table 4. Initial Version of Productivity(LOCPERHR) Model.

DEPENDENT VARIABLE: LOCPERHR

SOURCE DF SUM OF SQUARES MEAN SQUARE
MODEL 14 232050 16575
ERROR 36 70551 1959
CORRECTED TOTAL 50 302602

MODELF PR>F R~SQUARE C.V. LOCPERHR MEAN

8.46 0.0001 0.77 63.5 69.76

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 107658 54.93 0.0001
KCA 1 9048 4.62 0.0385
C68EXP 1 16899 8.62 0.0058
SUMDIF 1 28862 14.73 0.0005
PGMEXP 1 11120 5.67 0.0226
JCLEXP 1 29339 14.97 0.0004
C74EXP 1 1115 0.57 0.4557
DEGREE 1 195 0.10 0.7541
MAJOR 2 3272 0.83 0.4422
PTYPE 3 10426 1.77 0.1697

non-zero; that is, the probability of a Type I error of rejecting the
null hypothesis of zero coefficients is 0.0001. The partial Fs, or
partial sums of squares, indicate that four variables have a level of
significance much higher than the 0.10 guide used for hypothesis
testing in regression analysis. 0f the four variables, C74EXP,
DEGREE, MAJOR and PTYPE, the two with the highest probability or
level of significance(DEGREE -~ 0.75 and C74EXP -~ 0.46) were

eliminated from the model. The VIFs, tolerance values, indicated no

significant level of multicollinearity.

78

Reduction of Initial Model

In deleting insignificant variables from a model, a decrease in R2 is
certain to occur. The R2 for the subset regression model must be
subjected to an adequacy test to insure a “satisfactory" value.
Aitkin proposed the calculation of an Rz—adequate(Ri) value as
follows[Aitkin, 1974]:

2 _ . _ 52 a
Ry=1-Q RO + dn,p)

where a

a¢ = - p(FP'“’E'l) -

n,p n-p-1)
2 2 C s . .

Rx = R* of initial starting set of variables

p = numbem of parameters

n = number of observations

a = level of significance

The 1level of significance should be small(say .01-.10) if the

exclusion of all irrelevant variables is important. Aitkin also

suggested that a larger a(say .25-.50), insured that "important"
variables were not excluded while the inclusion of possibly
irrelevant variables was tolerated. For this work, an a of 0.25
seemed appropriate since many irrelevant variables had already been

excluded. Therefore, wi h n=51, p=10 and a=.25,

0.25
10(r2:23
a0:25 o 1080 (g 33) = 0.532
51,10
e
and 2
R% =1 - (1-0.77)(1 +0.532) = 0.65

With R2= 0.65 as a guide, one can begin to review reduced or

subset regression models. The next iteration of the model removed

C74EXP and DEGREE. The MSE decreased slightly and R2 was reduced by

only .01 while the model F value increased to 10.01 and the C.V.
changed only by about 0.7. All of the variables were significant at
.003 or less with the exception of MAJOR which showed a low partial F
value and a significance level of 0.307; that is, one can not reject
the hypothesis that the coefficient of MAJOR is zero.

Deleting MAJOR from the set of variables, produced a final
LOCPERHR model(Table 5) with all variables significant at 0.0006 or
less. This model has an MSE lower than that of the initial model and
an R2 of 0.74 which is more than adequate by Aitkin's criteria and
only 3% less than the initial model. Table 5 also contains the
coefficients associated with all the variables. A discession of the
resulting equation is necessary not only for explanatory purposes but
also to verify the model's adequacy by affirming the reasonableness
of the results.

The coefficient for STLOC seems small in comparison to the
others but realizing that the average STLOC value is over 1000 makes
it quite reasonable. The positive impact of size on productivity
agrees with the findings of Paulsen, Basili and Freburger, and
Jeffery and Lawrence in the new development arena[Paulsen, 1981;
Basili and Freburger, 1981; Jeffery and Lawrence, 1979]. It is
typically counter-intuitive for productivity to increase with lines
of code; however, the sample data indicates that this result occurs
when most of the code is converted automatically. Other conversion
efforts may not support this result especially if only a small

percentage of the code is converted automatically.

80

A_

Table 5. Final Version of LOCPERHR Model.

DEPENDENT VARIABLE: LOCPERHR

SOURCE ' DF SUM OF SQUARES MEAN SQUARE
MODEL 9 222735 24748
ERROR 4l 79867 1948
CORRECTED TOTAL 50 302602

MODELF PR >F R-SQUARE C.V. LOCPERHR MEAN

12.7 0.0001 0.74 63.3 69.76

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 120067 61.64 0.0001
RCA 1 35961 18.46 0.0001
C6BEXP 1 43080 22.12 0.0001
SUMDIF 1 28152 14.45 0.00605
PGMEXP 1 27230 13.98 0.0006
JCLEXP 1 54250 27.85 0.0001
PTYPE 3 43238 7.40 0.0005

PARAMETER ESTIMATE

INTERCEPT 64.538

STLOC 0.132

KCa -20.630

C68EXP 20.528

SUMDIF -27.750

PGMEXP 21.703

JCLEXP -46.786

PTYPE 1 16.223

PTYPE 2 -68.289

PTYPE 3 -82.803

AD-A145 757 A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER ’,3
PRDDUCTIV]TV AND EFFORT ESTI..(U) AIR FORCE INST OF
CH WRIGHT-PATTERSON AFB OH J D FERNANDEZ MAY 84
UNCLASSIFIED AFIT/CI/NR 84-440 F/G 9/2

A

lllll% EL um” 5

TR
== i
1125 s e

MICROCOPY RESOLUTION TEST CHART
-ONSL BUREAU OF STANDARDS - 1965 - ~

The coefficient of KCA(programmer's knowledge of the program)

initially seemed to be an error. Intuitively, if a programmer is
more familiar with a program(higher KCA), it should be expected that
his productivity would be higher. However, this opposite result
confirms the comments made by Oliver about a U.S. Navy conversion
which indicate that if a programmer is converting his own program, he
is more likely to modify and/or correct program lines rather than
just recode the original program{[Oliver, 1978]. Programs that fall
in this category sometimes show that the finishing lines of code are
the same or less than the starting lines of code, which is extremely
unlikely in this conversion as discussed in chapter 4. Programmers
may be "improving" their own programs or implementing unauthorized
changes requested by local management.

The coefficient of the variable SUMDIF, measure of program
difficulty, results in a negative value. It is intuitively logical
for this to be true since one would expect the productivity to
decrease as the level of difficulty of the program increases.

The presence of both C6BEXP(COBOL-68 experience) and
PGMEXP(general programming experience) initially led to a concern for
multicollinearity. However, the VIFs(variance inflation factors)
indicated no significant level of multicollinearity. An increase of
20 LOCPERHR for each year of C68EXP and each year of general
programmer experience(PGMEXP) is possible for the conversion realm.
The magnitude of these coefficients is applicable to this case study

only; however, this result generally agrees with several new

development studies which showed that experience significantly
influences development time.

The negative coefficient for JCLEXP is only reasonable because
it was discovered during the data collection that the experience in
many cases included primarily academic experience for Jjunior
programmers or programmer trainees. In addition, JCL experience for
intermediate or senior programmers in the B3500 environment was
typically nil since there is no JCL for associated application
programs. JCLEXP is essentially an indicator for an entry level
programmer and nothing more.

The categorical variable of PTYPE(programmer type) has four
levels but only three coefficients since the "no experience” 1level
effect is included in the intercept term by the GLM procedure. It is
very reasonable for the development type(l) programmer to have a +16
coefficient since he is more likely to have the highest productivity
because he probably has the greatest expertise. Programmers with
both development and maintenance experience(type 2) exhibit a
negative effect on LOCPERHR. This seems reasonable because
programmers in this category do not have the depth of experience as
development programmers since this category seems to be a stepping
stone for entry-level programmers who upgrade from the maintenance
type(3) 1level. The data shows, what may be common in many
organizations, that the inexperienced programmers typically start out

in maintenance.

83

+2

Model adequacy is measured by several means, including R2 and
the reasonableness of the resulting parameters. Draper and Smith and
others suggest that another measure of model adequacy is that the
observed or model F value be about four times the critical F
value[Draper and Smith, 1966]. Since the fitted model exhibited an F
value of 12.7 and the critical F value for an alpha of .05 is 2.12,
the observed or model F value is approximately six times the critical
F value. This test suggests strongly that the model is statistically
adequate. A final measure of adequacy is the plot of the calculated
LOCPERHR(yhat) versus the residuals(difference between observed and
predicted value). The residual plot indicated an adequate scatter of
the points around O, thus contributing to the assessment of an

adequate model.
Rlternate Dependent Variable Models

The dependent variable of hours per hundred 1lines of code
converted(HRPERHLO) was used in regression analysis with the same
initial set of independent variables used with LOCPERHR. HRPERHLO is
essentially a productivity measure of "cost units"” as suggested by
Jones([1978]. Therefore, the more productive a programmer is the
lower the value of HRPERHLO and vice versa. STLOC was converted to
HSTLOC(hundreds of 1lines of code) since this measure is more
appropriate for an HRPERHLO model.

The final or subset regression model with all wvariables
significant at the 0.048 level or below is shown in Table 6. The

model Rz of 0.73 is slightly less than that of the LOCPERHR model.

85

Table 6. Final HRPERHLO Alternate Productivity Model.

DEPENDENT VARIABLE: HRPERHLO

SOURCE DF SUM OF SQUARES MEAN SQUARE
MODEL 11 648.80 58.98
ERROR 39 245.80 6.30
CORRECTED TOTAL 50 894.58

MODELF PR>F R-SQUARE C.V. HRPERHLO MEAN

9.36 0.0001 0.73 66.8 3.76

SOURCE DF TYPE III SS F VALUE PR > F

KCA 1 392.78 62.32 0.0001
HSTLOC 1 93.51 14.84 0.0004 .
C6BEXP 1 126.37 20.05 0.0001
SUMDIF 1 26.23 4.16 0.0482
JCLEXP 1 52.90 8.39 0.0061
MAJOR 3 147.53 7.80 0.0003
PTYPE 3 143.26 7.58 0.0004
PARAMETER ESTIMATE
INTERCEPT 1.1264
KCA 3.2682 L
HSTLOC ~0.3890 ’
C68EXP ~2.2135
SUMDIF 1.0864
JCLEXP 1.6393
MAJOR 1 -13.2499
MAJOR 2 -15.6522
MAJOR 3 7.8853
PTYPE 1 -0.0134
PTYPE 2 ~7.2428
PTYPE 3 5.5494

The observed model F value of 9.36 is 4.6 times the critical F value
of 2.04(F.05, 11, 39) which qualifies as an adequate measure yet is
lower than that of the LOCPERHR model. As expected because the
dependent variable is in cost units, the coefficients for this
inverse productivity(cost) model have signs opposite of those in the
LOCPERHR model. This is true for KCA, HSTLOC, C68EXP, SUMDIF and
JCLEXP. Notice, however, that PGMEXP was found to be insignificant
and thus left the model while MAJOR remained at a fairly significant
level. The coefficient associated with a CS major(type 1) |is
negative as expected since a reduction in HRPERHLO seems reasonable
for such a major. The DP-MIS/Math/Engineering category(type 2) also
shows a negative effect on HRPERHLO. The relatively small difference
in the absclute wvalue might be explained by noting that the CS
academic major is somewhat new and more likely for newer and less
experienced programmers. Intuitively, it seems reasonable to expect
a social science, business or other major(type 3) to exhibit a
positive effect on HRPERHLO.

To reduce some of the variation in the data, an alternate
dependent wvariable model, with the natural 1log of LOCPERHR or
LOGLOCPH, was studied as suggested by Montgomery and Peck[1982].
Table 7 presents the final subset model that resulted from the
regression analysis. The variables which remained in the model
exhibited a level of significance of the variables of 0.008 or lower.
The coefficient of variation does show a decrease while the R2 only

increases by .0l. The observed model F value of 10.89 is 5.3 times

86

A

87

Table 7. Final LOGLOCPH Alternate Productivity Model.

DEPENDENT VARIABLE: LOGLOCPH

SOURCE DF SUM OF SQUARES MEAN SQUARE
MODEL 11 38.1400 3.4673
ERROR 39 12.4228 0.3185
CORRECTED TOTAL 50 50.5628

MODEL F PR >F R-SQUARE C.V. LOGLOCPH MEAN

10.89 0.0001 0.75 14.9 3.7715

SOURCE DF TYPE III SS F VALUE PR > F

RCA 1 13.224 41.52 0.0001
STLOC 1 13.882 43.58 0.0001 '
C68EXP 1 5.607 17.60 0.0002
SUMDIF 1 2.438 7.66 0.0086
JCLEXP 1 3.505 11.00 0.0020
MAJOR 3 4.334 4.54 0.0080
PTYPE 3 5.911 6.19 0.0015

PARAMETER ESTIMATE

INTERCEPT 4.15786

RCA -0.59968

STLOC 0.00150

C68EXP 0.46624

SUMDIF -0.33126

JCLEXP -0.42195

MAJOR 1 1.75704

MAJOR 2 2.79148

MAJOR 3 -1.32880

PTYPE 1 0.20660

PTYPE 2 0.86744

PTYPE 3 -1.67892

the critical F (2.04) which is adequate but less than that of the
LOCPERHR model. The resulting set of variables is the same as that
of the HRPERHLO model and only one variable different from the
LOCPERHR model, with MAJOR replacing the variable PGMEXP. As would
be expected, the signs of the coefficients are exactly the opposite
of those of the HRPERHLO model and parallel those of the LOCPERHR
model. This model might be considered equally as good as the
LOCPERHR except for the fact that the model uses logs rather than
natural values thus complicating the interpretation of the results.
The coefficient of variation(C.V.) does show a significant reduction
in the unexplained deviation remaining in the data since logs were

used in this model.
Consideration of Organizational Impact

Paralleling the new development productivity work of Jeffery and
Lawrence, it was decided to include the organization or conversion
center(MAJCOM) in the final LOCPERHR model to study the
results[Jeffery and Lawrence, 1979]. 1Initially, the R2 increased to
0.79; however, the PTYPE variable was found to be insignificant at a
0.3 level and MAJCOM only marginally significant at 0.09. PTYPE was
removed from the model producing a further reduced subset with C68EXP
insignificant at a level of 0.1415. Table 8 shows the final LOCPERHR
with MAJCOM added and PTYPE and C68EXP removed.
2

The R™ of .75 for the organizational LOCPERHR model is only .01

higher than the original LOCPERHR model without MAJCOM. There is

i}
|
1

89

Table 8. Final LOCPERHR Model With Organization.

DEPENDENT VARIABLE: LOCPERHR

SOURCE DF SUM OF SQUARES MEAN SQUARE i
MODEL 9 227237 25249
ERROR 41 75365 1838
CORRECTED TOTAL 5C 302602

MODELF PR>F R-SQUARE C.V. LOCPERHR MEAN

13.74¢ 0.0001 0.75 61.5 69.76

SOURCE DF TYPE III SS F VALUE PR >F

STLOC 1 108053 58.78 0.0001
KCA 1 9341 5.08 0.0296
SUMDIF 1 45253 24.62 0.0001 '
PGMEXP 1 26888 14.63 0.0004
JCLEXP 1 47236 25.70 0.0001
MAJCOM 4 82698 11.25 0.0001 ,
PARAMETER ESTIMATE
INTERCEPT 64.300
STLOC 0.138
KCA -20.187
SUMDIF ~33.378
PGMEXP 19.730
JCLEXP ~39.567
MAJCOM F 115.751
MAJCOM J 16.089
MAJCOM S -64.195

MAJCOM T 29.444

|

also a slight increase in the model F value, from 12,7 to 13.7. The
coefficients of the variables, common to both models, have the same
signs and approximately the same magnitude. Since the intercept is
almost exactly the same, it is apparent that the MAJCOM has replaced
the combined effect of PTYPE and C68EXP. By reviewing the MAJCOM
coefficients, one can see real differences in productivity among the
organizations suggesting agreement with researchers who exposit the
inclusion of organization in productivity research. The fact that
the original LOCPERHR model appears equally adequate with this
revised model, leads one to choose the original LOCPERHR model as the

preferred model for continuing the analysis.

Model Validation

Montgomery and Peck list two basic validation procedures that could
be applied to this work[Montgomery and Peck, 1982]. One, collecting
fresh data to investigate the model's predictive performance could be
done as future work when more data is available but is not feasible
at this time. The second, data splitting, has various ways of being
applied. The most common data splitting technique is setting aside
some of the original data and using these observations to investigate
the model's predictive performance. Since the sample was not very
large, this technique was not feasible; however, the prediction error
sum of squares or PRESS statistic may be considered as a form of data
splitting. To calculate PRESS, an observation i is deleted and a

regression model is fitted to the remaining n-1 observations using

90

the resulting equation to predict the withheld observation dependent
variable, say Y- Denoting this predicted wvalue yhati, one can

calculate the prediction error for point i as e, = vy,

i i yhati. Then

9l

the PRESS statistic is defined as the sum of squares of the resulting

"deleted residuals":

2
4
1

PRESS =
i

™My

The GLM procedure calculated the PRESS statistic for the model with a
value of 143986, Montgomery and Peck suggest an R2 for prediction to
validate the model results:

PRESS

Corrected Sum of Squares

R2 =
Prediction

For the LOCPERHR model,

143986
______ = 1 - 0.476 = 0.524
302602

2
Prediction

Therefore, one could expect this model to "explain" about 52.4
percent of the wvariability in predicting new observations, as
compared to the 74 percent of the variability in the original data
explained by the least squares fit. The difference points to the
great variability of the raw data indicating that though the model
may be adequate, additional sample data would be useful for further
regression analysis and model enhancement.

Wolberg's model for productivity in terms of lines per day was
used to calculate productivity in an attempt to determine an R2 for

prediction for comparison with the validation results above[Wolberg,

1983]. Assuming 7.88 hours per day(Wolberg uses 173.3 hours/month

and 22 days/month), Wolberg's model becomes:

0.53
= *
PLH 0.808 * L

where PLH is lines of code per hour and L is equal to STLOC. Since
Wolberg's model is based on data over the entire spectrum of the
conversion project, the model was arbitrarily adjusted with a
multiplier based on an assumption that the recoding and unit testing
activities involved 50 percent of the total hours. This regquired an
adjustment as follows:

0.53 0.53

= * * . = * .
PLH 2 * 0.808 *L 1.616 * L

Montgomery and Peck suggest the following formula for R2 for

prediction with new data:

2
Prediction

where yhati is the predicted value for ¥; and ybar is the mean of the
yi values and the summations are done over the n data points
available.

Wolberg's adjusted productivity model produced an RZ for
prediction of 0.37 when it was assumed that programming activities
were 50% of the original overall time. Adjusting Wolberg's model
with a multiplier of 2.5(assuming programming activities to be 40% of
the original time) produced an R2 for prediction of 0.51. Finally, a

multiplier of 3.33 was used to adjust the model and the R2 for

"...'.'------.--.-------.-.-.'-...-'.-.-...'-'---..-....-l-'llﬂl!I-IllI-Ir

92

e

prediction increased again to 0.63. These results seem to indicate

that with certain arbitrary multipliers being applied to Wolberg's
model, one could have a productivity model comparable in adequacy to
the LOCPERHR regression model developed above. However, with only
one parameter in Wolberg's model, much of the variability in the data
may not be captured. This would lead one to continue to give

preference to the LOCPERHR model.

-

94
CHAPTER VI
SOFTWARE CONVERSION EFFORT ESTIMATION ANALYSIS

Introduction
As evidenced by the literature review presented earlier, little work |
has been done in the area of effort estimation associated with
conversion of software. The purpose of the last phase of the
research was to validate the accuracy of significant models or
methods for estimating effort and to develop a model for the
environment under study. The basis for the validation was again the
Air Force Phase IV data.

This particular endeavor required obtaining conversion effort

hours at the system, rather than program, level. As discussed in the
last chapter, there were a couple of program related conversion
activities that were reported at the system level, or not reported at
all. Thus, the two leading Phase IV organizations, the Air Force
Data Systems Design Center (AFDSDC) and the Tactical Air
Command(TAC), were contacted for additional data. These two H

organizations, being almost 100% complete, were thus able to provide
more accurate system level effort data for this analysis. The data
included the number of hours, number of programs and LOC for each
system completed and is provided in Table 9.

The approach to the study involved the formulation of some basic
assumptions needed for the detailed specification of the models to be

used. All the models were converted to the uniform basis of hour q

95

Table 9. Phase IV System Level Effort Data.

! Nr. of
MAJCOM System LoC Programs Hours

0 AX 1985 2 940

0 BK 8632 6 1396

0 CB 1484 1 642

0 EB 7571 8 1004

0 IE 6918 5 1017

0 IN 37873 11 2793

0 LY 7506 8 1062

) QP 19000 13 1832

0 SF 4360 1 1051

) 2G 48227 39 5268 i
0 zp 2042 3 856

T co 13910 7 1078

T EC 717 1 149 :
T RV 982 2 225 : |
T MQ 530 1 217 s
T oT 6325 2 641 ;
T oz 33635 22 2375
T QF 1463 1l 448 ‘!
T WE 17156 7 1112

T WL 1569 3 408

estimation, rather than man-month or day estimation. Using data
known prior to the conversion(STLOC and number ©f programs), effort

hours required by each system were estimated by each model. These

hours were compared to the actual hours and the R2 for prediction,

average squared prediction error(comparable to the mean square

error), and average residual(average deviation of actual hours minus
predicted hours) were calculated to measure accuracy. The objective
is to obtain a relatively high wvalue(close to 1.0) of Rz for
prediction, an average squared prediction error that is as low as

possible and an average residual that is relatively close tc zero. ;

Since R2 and the average residual both have specific numeric goals,

they were of primary interest in the analysis. Some tuning of the
models was performed and the process repeated. Finally, regression
analysis was used to develop a model for the Phase IV environment.
The glossary contains definitions of statistical terms which may be
helpful in interpreting results.

One assumption made in transforming models to hour estimation
was to use eight(8) hours per day and 22 days per month if no hour
figures were provided by the model developer. Since only the effort
involved in recoding, including related testing and documentation
etc., was of interest, only the applicable parts of models providing
for other activities were used for this research. The measure of the
documentation status, required by some of the models, is assumed to
be 90% which seemed appropriate for Phase IV. Other assumptions made
for specific models are discussed in the applicable sections of this

chapter.

Respecification of Effort Estimation Models

The following models were studied for accuracy: FCSC, Hahn and Stone,
Grim, Epler and Andrus, Wolberg, and Basili and Freburger[Federal
Conversion Support Center, 1982c; Hahn and Stone, 1970; Grim, Epler
and Andrus, 1978; Wolberg, 1983; Basili and Freburger, 1981]. The
model suggested by the AFASPO is just a slightly modified version of
the Hahn and Stone model so it is not included here[Air Force

Automated Systems Project Office, 1982a]l. The Basili and Freburger

model is the only one not developed for conversion effort estimation,

Details of the models are included in Appendix A.
FCSC Cost Model

The FCSC model was developed for the total coverage of a project,
from planning to final implementation[Federal Conversion Support
Center, 1982c]. Only those portions of the model specifically
related to a programmer's conversion efforts were used. The first
function specified in the model that is applicable to this work is
that of test data generation. As stated in the model, if the
percentage of code the test data is required to exercise equals the
percentage of code the test data exercised in the original
environment, then about one day per program(ETD) is necessary to
validate and transfer data.

For the function of application program and system software
conversion, a complexity class must be initially chosen. Class ¢,
simple syntax translation, appeared to be the best choice for Phase
IV. This class provides the design effort(DE) parameter of 1, the
programming effort(PE) parameter of .5 and the testing effort(TE)
parameter of 2. The documentation status(DOC) for Phase IV was
assumed to be .9. The FCSC baseline productivity rate(BR) of 12.7
LOC per day for new development and the measure of total effort(NDE)
for new development(100) were also used to calculate the manual daily
conversion productivity rate(MCPR):

BR*NDE
MCPR = —mem e m e e e e e

12.6*100

MCPR = ————— e — -
[€(1.0 - (.90/2))*1] + .5 + 2

MCPR = 413
Then, using the FCSC assumed automatic translator daily conversion
productivity rate(ACPR) of 630 LOC, the percentage of code typically
translated(T) automatically for Phase IV programs(90%), and STLOC to
represent the starting lines of code, the effort required for
application program and system software conversion(Esw) may be

calculated as:

STLOC(L - T) STLOC*T
E = -~ 4+ -
SW MCPR ACPR
STLOC(1-0.9) STLOC* .9
E._ = -— + - —
S 413 630
-3
= * *
Eg,, = 1.67*STLOC*10

The function of data file and data base conversion requires the
selection of a data complexity class. Class D, appropriate for Phase
Iv files, provides a file conversion complexity factor (FCF) of 1.
Since there are no data description or dictionary languages, the
effort for file conversion(EDF) may be calculated as follows:

E .. = (F*FCF)*(1.0 -~ (DOC/2))

DF
where

F = numbers of files
The number of files per program or system was not readily available
for inclusion in the FCSC formula. An estimated average number of

files per program was derived from the one source of such information

available. An AFDSDC planning document shows approximately six files

98

per program Sso 6*P was substituted for the number of files, with P
representing number of programs in the system[Air Force Data Systems
Design Center, 1982]}. Therefore,

E

DF

EDF

(6*P*1)*(1.0 - (.90/2))

3.3*P

There is no operation control language or JCL for the B3500
systems which make up the sample, thus the FCSC suggested approach of
using the application program and system software procedure for
estimation does not apply. Since JCL formats are somewhat standard,
an estimate of between one half to one day per program seemed
appropriate for setting up the respective control language;
therefore, three fourths of a day per program was chosen for this
effort(ECL):

ECL = 0.75*P
This appeared to parallel the 5.3 hour(0.66 day) per program average
for Phase 1IV.

For the function of system testing, it was necessary to again
use the unique AFDSDC data, mentioned above, to determine the average
number of runs(J) per program which was calculated to be two runs per
program. The number of files(F) per program was previously
calculated to be 6. The FCSC assumes about 5 to 10 reruns(RE) are
typically required for conversion testing. For a fairly compatible
environment, an RE factor of 5 seems appropriate. The testing
effort(EST) required for each system can then be calculated:

Egp = [(1 + F)/10 + ((P + F + J)/80]*[1 + RE/10]
EST = [(1 + 6*P)/10 + ((P + 6*P + 2*P)/80)]*[1 + 5/10]

99

100

= *
EST 1.069*P + .15

The function of acceptance testing requires the estimation of

the duration(DUR) of the test. A DUR of 1 day per program seems more

than adequate for this environment. Using the average of 6 files
per program(F), calculated above, one can formulate the equation for

acceptance testing effort(EAT) per system as follows:

EAT = [DUR*1/20] + [((P + F)/5)*(1 - e‘(DUR/ZO))]
Eyp = [1*P*1/20] + [((P + 6*P)/5*(1 - e-(l*P/ZO))]
Eyp = 1.45%P - 1.4*pre (P/20)

The redocumentation activity formula requires the estimation of
the coordination effort (RCOR) between staff members during
redocumentation. Since Phase IV systems were well documented, FCSC's
typical RCOR factor of 10% seemed adequate. One can calculate the

amount of time(ERD) for programmers to redocument a system as

follows:

]
"

(P/4 + 1)*RCOR*DOC

m
n

(P/4 + 1)*.10*,90
E _ = 0.0225*P + .09

In summary, the FCSC specific model(E) for estimating

FCSC
programmer related effort in the Phase IV environment is as follows:

Brcsc-pays = Erp * Bsw * Epr * EcL * Bgr * Ear * Epp

-3
= * * " »* *
Epcscpays = P+ 1-67*STLOC*107> + 3.3%B + .75%P + 1,069%P +
15 + 1.45%P - 1.a*pre F/20) 4 0225+p + .09
-3 -(P/20)
= * * * - P
Epcscopays = 7-59°F *+ 1.67*STLOC*107 - 1.4%Pre + 0.24

101

To convert to effort hours(E), a multiplier of 8 hours per day

FCSC
was used to finally produce

3 -P/20

= 60.72*P + 13.36*STLOC*10 ~ - 11.2*P*e +1.92

Eresc

i Hahn and Stone or MITRE Model

Hahn and Stone represented the cost of conversion with the three
component costs of program transfer(cp), data transfer(CD) and other

costs(Co)[Hahn and Stone, 1970]. The cost for transferring a program

includes both costs of automatic(CA) and manual(CM) translation.
Only the process for computing manual translation costs are further
defined. The main element is a formula for calculating the total
number of man-days required (MDT). Several parameters must be

defined before the MDT formula may be used. Since no modifications

are allowed during the conversion of Phase IV programs, DF2 = 0 and

since there are no subprograms defined then DF3 = 0. The

documentation status factor(DFl) is one minus DOC of the FCSC model;

in other words, since DOC = .9, DFl = ,1. For the COBOL translation

environment, recoding is measured with RBC = 29 and testing with RBT
= 18.3. The formula also requires a statement of the LOC to be
manually transferred(I) and this may be defined as .1*STLOC for the
Phase IV environment in which is used a 90% effective automatic

translator. Therefore,

= * *
MDy = I/Rpe + (Dpy*I/Rpo) + (Dpy*I/Rpe) + 1/Rgy + (Dpg™I/Rpn)

becomes

e

102

! .1*STLOC «1*(.1*STLOC) .1*STLOC

MDT= -+ +
: 29 29 18.3
4.9*STLOC
MD, = ——-~—m-—-
T 530.7

Using the FCSC estimate of 630 LOC per day for an automatic
translator, the automatic translation time(ADT) may be calculated
with:

. 9*STLOC

630

Therefore, the total effort hours(E,.) required for program

HS

conversion can be defined as:

= w*
Eys = (MDp + ADp)™*8
8*4.9*STLOC 8*.9*STLOC
E S eemoem————— 4 mmmm——————
HS 530.7 630
= *
Egg = -0853*STLOC

This formula must be supplemented with some factors to account for
the CD and C0 costs that are not further defined by Hahn and Stone.
The additional effort estimates for test data generation and
validation, file conversion and redocumentation were included. The
FCSC estimates were used as a basis for defining these supplemental
hours required. For test data generation, the FCSC estimate of 1 day
or 8 hours per program(P) was used. Since Hahn and Stone
specifically state that file or data conversion costs are typically
small in comparison to program conversion costs, one-half of the FCSC
estimate of 3.3 days per program was used. This results in 1.65 days

or 13.2 hours per program. Since the FCSC estimate for

103

redocumentation seems too small, a factor of .5 days or 4 hours per
program was Selected. The total supplemental hours used were:
8*P + 13.2*P + {*P = 25,2*P 1

Thus, finally becomes:

By

EHS = .0853*STLOC + 25.,2*P

Grim, Epler and Andrus Model

Grim, Epler and Andrus present a formula for computing the conversion
programming cost in man-days(M)[Grim, Epler and Andrus, 1978]. This
principal element of their model requires the definition of three

parameters: the translator effectiveness(T) which is again assumed

to be 90%, the documentation status (D), assumed to be .90, and the
daily LOC conversion rate(R) of an average programmer set at 30 as
suggested by the model for COBOL to COBOL translations. Therefore,

2*STLOC(1 -T)

M= e
R*(1 + D)
becomes
2*STLOC(1 - .90)
M= - ——— -
30*(1 + .90)
M = 0.00351*STLOC

It is assumed by the model that automatic conversion(A) is minimal
and therefore not included. However, to provide a uniform basis for
comparison, the FCSC estimate for automatic conversion was also used
here:

.9*STLOC i

A = .00143*STLOC

104

Therefore, the total effort hours(E) were computed as follows:

GEA

E {0.00351*STLOC + ,00143*STLOC)*8

GEA

EGEA

.0395*STLOC

This formula was also adjusted to include relevant supplemental
factors. Since data conversion costs using the model's suggested 1/0
unit cost approach can not be easily computed for Phase IV programs
and to provide for uniformity, the same supplemental estimates used
with the Hahn and Stone formulation were used here. The adjusted

model is then:

= * *
EGEA .0395*STLOC + 25.2*P

Wolberg Model

Wolberg developed an effort estimation model for recoding based on
nine very large projects which included time for all activities from
planning to implementation[Wolberg, 1983]. This model produces
person-month(E) estimates based on thousands of lines of code(L):

E = 7.14*110'47
For uniformity, the model was adjusted to estimate hours by

multiplying by 173.2 which is Wolberg's estimate of person-hours per

person-month. This results in the following estimate of hours(Ew):

0.47
= *
EW 1237*L
To use the same basis of STLOC, the model became:
E, = 1237*(s'r1.oc/1000)°'“
or 0.47
E,, = 48.12*STLOC"

W

Since Ew results in estimates for the entire time spent by all the
staff of a conversion project, an arbitrary factor of 50% was used to
adjust the estimate to produce an estimate for programmer related
tasks only. Thus, for comparison with other models the following is
used to represent Wolberg's approach:

0.47

Ew = 24.06*STLOC

Basili and Freburger Model

Basili and Freburger developed various models for new development
efforts[Basili and Freburger, 1981]. One of the models uses the
concept of developed lines(DL) which is defined ;o equal the number
of new lines plus 20% of the reused lines. This model was considered
to Ye possibly applicable in the conversion realm if reused lines are
defined to be those converted by the automatic translator and new
lines as those that require manual recoding. Since DL is defined in

terms of thousands of LOC and a 90% effective translator is used:

.1*STLOC «20*.9*STLOC

DL = 2,8*STLOC*10™*
Basili and Freburger produced a linear fit using DL and
generated the following model:
E = l.«er"DLo'g8

where E is measured in person-months. This estimate was changed to

hours by multiplying by 173.33 which is assumed in the model, to be

the number of person-hours per person-month. Substituting the

105

T T TN T W T e -

expression for DL derived above, an estimate of effort hours(EB can

F)
be calculated as follows:

1.46%(2.8*sTLOC*10 4)0+98x173.33

.0835*sTLOC? " 98

EBF

EBF

fl

Validation of Existing Models

The models defined in the previous section were used to predict

effort hours which were then compared to the actuals by means of

2

RPrediction(the percent wvariability in the data explained by the

model), the average prediction error(average deviation in hours) and
the average squared prediction error, which is comparable to the
residual mean square (assumed to measure the average variance of the

residuals from the fit)[Montgomery and Peck, 1982].
Measurement of Accuracy of Basic Models

Table 10 lists the effort estimation models that were used to predict
effort hours for <comparison with the actual hours. The
validation/accuracy measures of the models are shown in Table 1l. It
was quite surprising to see that the Hahn and Stone model, which was
suggested for use within Phase IV, exhibited the highest R2, the
lowest average squared prediction error and an average prediction
error with the lowest absolute value. The highly parameterized FCSC
model had, surprisingly, the worst performance. This could be
attributed to errors or incorrect assumptions made during the
formulation of the Phase IV specific equation; however, a review of

the process revealed no apparent problems.

Table 10. Summary of Conversion Effort Estimation Models.

E =60.72*P+13.36*STLOC*10 2-11.2*p*e” (*/20),1 g2
FCSC

Eys =0.0853*STLOC+25.2*P

3 k3 *
Ecpa 0.0395*STLOC+25.2*P
Ew =24.06*STLOCO'47

0.98

= *

Egp 0.0835*STLOC

Table 11. Validation/Accuracy Measures of Basic Models.

2 Average Rverage Pred.
Model RPred Squared Pred. Error Error (Hours)
EFCSC 0.440 729236 680.72
EHS 0.841 207681 99.18
EGEA 0.538 602174 607.30
Ew 0.671 428055 . -380.53
EBF 0.685 408372 465.94

It is interesting to note that the Basili and Freburger model
ranked second in terms of R2 and the average squared prediction
error. The concept of developed 1lines seems to have some
applicability in the conversion area when code manually recoded is
substituted for new code and code automatically translated is
substituted for reused code. The Wolberg model was the only one that

resulted in a negative average prediction error indicating that the

predicted hours were generally higher than the actual hours. The

107

108

Grim, Epler and Andrus model had the second worst performance and
since it resembles the structure of the Hahn and Stone model but with
a smaller coefficient of STLOC it was not considered for further
refinement and analysis. The FCSC model was also considered to be
too inaccurate for this context with an Rz of 0.44 and a large number
of estimated parameters so it was not studied further.

To present a pictorial view of the behavior of the basic effort

estimation models, a hypothetical system of 8 programs with a varying

number of lines of code was used for making estimates with the

models. Figure 3 contains the overlaid plot of the five models.
Each is represented with the first character of the model's name.
Notice that the FCSC(labeled F in the plot) model and the Grim, Epler
and Andrus(labeled G) model produce estimates that are much lower

than those of the other models.
Analysis of Refined Models

Only the Hahn and Stone, Wolberg, and Basili and Freburger models
were considered for further refinement and analysis as discussed
above. Though the average squared prediction error for the Hahn and
Stone model was significantly less than that of the other models, it
was still somewhat large in magnitude. Attempts were made to reduce
this error and increase R2 for all three models.

First, the Wolberg model results were reviewed. Since, on the
average, the model estimates were higher than the actuals, it was

decided to reduce the arbitrary percentage of programmer related time

NnICOIT
© e
-~
wn
o
o1

nN
wn
o
sl a
ez

109

- " .
» " »
1]
L] " s s
L)
L4] ¢
‘ °
- L] [GG
L] . é
» s ¢
" °
. -]
- [
»" . ¢
]
" . [
.]
" * s
L] °¢
» "] ¢
[
L]
.) P
] L y
L] r
[g r’
. ¢ , r
" a pr f
. s et
" . P yr
[} ',"
[r
L] [] r
Pt
" '!I'
r"l
A |
-]
S e
-]
[]
»

Figure 3.

R 1 M 1 T T 1 v
$000 10000 1S000 20000 25000 30000 35000 40000
LINES OF CODE

Plots of Estimates of Basic Models for a Small System

110

from the 50%(reduction of time) of the original model which included
time for the entire project, from planning to implementation. Three

refinements, with 30, 35, and 40 percent, were attempted. The model

which assumed 40% of the overall time, for programmer related

functions, demonstrated the best results:

Revised Ew Model: 19.25"'STLOCO'4.7
R2 Avg.Squared Pred. Error Avg. Pred Error
0.742 335932 -59.42

Though R~ was increased and the average prediction error was
decreased, the average squared prediction error is still relatively
high. The data used for development of the original Wolberg model
was very different from that of Phase IV so better results than these
would be unlikely.

The Basili and Freburger model which performed remarkably well
in the basic analysis was adjusted by modifying the equation for
calculating the number of developed lines. The original equation
called for summing the new code plus 20% of the reused code. This
produced the model used in the comparisons of the previous section.
It was decided to try various percentage factors to calculate the
overhead associated with reused code, or in this case, with code
translated by the automatic translator. The original performance
measures showed that the model estimates were normally lower and thus
percentages higher than 20% were required. Adjustment percentages of
40, 35, 30, and 25 were used for comparison. The 30% overhead factor

produced the best results as follows:

Revised EBF Model: 0.1097*STL0CO'98
Rz Avg. Squared Pred. Error Avg.Pred. Error
0.823 229995 227.54

These results were better than expected with R2 increasing to a very
adequate level and the average prediction error decreasing
considerably. However, the fairly large average squared prediction
error indicates the existence of some large residuals. The predicted
hours are much better estimates of the actuals than the average of
the actual hours; i.e., the total sum of squares about the mean is
much larger than the average squared prediction error. This results
in an apparently commendable Rz.

The Hahn and Stone model had the best overall performance in the
initial analysis. Even after improving the results of the next best
models, Wolberg and Basili and Freburger, the Hahn and Stone model
continued to exhibit better performance. One parameter that this
model uses that is not present in the other two models is that of the
documentation status. 1t was decided to test the sensitivity of the
model results to the documentation status used by Hahn and Stone(see
Appendix A) by changing the status from .l(very good documentation)
to .25(good documentation). The coefficient of STLOC changed from
0.0853 to 0.0896. The second term of the model(25.2*P), developed by
using FCSC model criteria, was not initially modified. The results
of this revised model indicated a decrease in R2 and an increase in
the average squared prediction error. Though the changes were not
great, the results demonstrated that a documentation status of .1 was

most appropriate.

111

Another element that makes the Hahn and Stone model different
from the Basili and Freburger and Wolberg models is the presence of a
term which attempts to capture the effort involved in traﬁferring
data and in other activities. With the coefficient of STLOC set at
its original value of 0.0853, several different coefficients of
P(number o©of programs) were used to determine their impact on the
model's performance. All of the coefficients greater than the
original value of 25.2 degraded the model's performance while only a
couple of lower valued coefficients provided a slight improvement.
The model with the best R2 and the lowest average squared prediction
error was the following:

Revised Eus Model: 0.0853*STLOC + 20*P
R Avg. Squared Pred. Error Avg. Pred. Error

0.845 201816 136.36

Though providing a slight improvement in results, this model ranks
about equal with the original model because there is an accompanied

increase in the average prediction error.

Development of Models With Regression Analysis

The availability of Phase IV system level effort data presented an
excellent opportunity to develop models specific to the Air Force
environment. One model of exponential form, similar to that of
Wolberg and Basili and Freburger, was developed. A second model of
additive form, such as that of the Hahn and Stone model, was also

constructed.

112

113

Exponential Form Effort Model

The first regression model developed produced an Rzof 0.844 which is

about the same as that of the Hahn and Stone model. The resulting
parameters formed the following equation for predicting effort
hours(EAFx):

0.591

= *
EAFX 5.55*STLOC

Since logs of the actual hours and the lines of code were used
to build the model, it is difficult to compare the resulting mean
square error(MSE) with previous average squared prediction errors.
However the model's F value of 97.69 is several times the size of the

<
critical F value of 4.14 indicating model adequacy and predictive

value[Draper and Smith, 1966]. The residual plot demonstrated an
adequate scatter of the points around zero thus contributing to the
assessment of an adequate model. The prediction error sum of squares
or PRESS statistic, as discussed in the previous chapter, was used

for partial validation of the model as follows:

PRESS
2 £ 1 - e
Prediction Corrected Sum of Squares
) 2.86663
R s = 1 = m—m————— = 0.805
Prediction 14.69262

This result indicates that this model could be expected to explain
about 80 percent of the variability in predicting new observations,
as compared to the 84 percent of the variability in the original data
explained by the least squares fit. The "loss" in R2 for prediction

is very slight indicating model adequacy.

114

Additive Form Effort Model

The additive model was developed with starting lines of code(STLOC)
as well as number of programs(P). The resulting equation for
predicting effort hours(EAFA) was as follows:

EAFA = 309 + 0.0390*STLOC + 67.76*P
This model produced the highest R2(0.928) of the effort estimation
analysis indicating that 92.8% of the variability of the actual hours
is explained by the model. The model’'s F value of 109.36 was even
higher than that of the exponential form model. The mean square
error (MSE), 110520, was lower than the average squared prediction
error of all of the existing models studied above. The PRESS '
statistic was lcomputed again and used with the corrected sum of
squares to calculate a prediction R2 for partial model validation:

2 6162413

Prediction 26051370

This model could be expected to explain about 76% of the variability
in predicting new observations(compared to 80% of the exponential
form model), as compared to the 92.8% in the original data explained
by the least squares fit. The "loss" in R2 for prediction is greater
than that of the exponential model; however, model adequacy is still

upheld. Though the recidual plot demonstrates an adequate spread

around zero, a couple of "distant" points reveal the variance which

contributes to the lower R2 for prediction.

115

Final Comparison of Models

Using the same hypothetical case used earlier, the refined Wolberg,
Basili and Freburger, and Hahn ard Stone models were plotted along
with the two regression models. Figure 4 contains the plots of the
five models with the exponential form model represented by "1" and
the additive form model represented by "2" while the other models are

again represented by the first letter of the model's name. Notice

that all the models operate within a much closer framework. The
additive form model(labeled 2) depicted the highest R2 when regressed
against the Phase IV data.

In order to provide a further evaluation of the two regression
uodels, the models were assumed to be developed independent of the

data and were both used to predict hours for comparison with the

actuals, as was done for the validation of existing models. The
exponential(EAFx) model produced the following results:
Rf’r ed Avg.Squared Pred. Error Avg. Pred. Error
0791 271700 I 6s.81

The performance of the additive(EAFA) regression model appeared to be

somewhat better as indicated by the measurements:

2
Tpreg NV%:S3uared pred. Error Avs: Pred. Error 4
0.928 93943 ~0. 460

The average prediction error is very close to zero which means that

the model seems to produce approximately unbiased

predictions[Montgomery and Peck, 1982]. The additive model appears

to be a better predictor of effort hours. A numerically simpler

3s00

3250

3000

2750

2500

2250

2000

1750

»nwICOoOI

1250

1000

750

S004 =

250

x

SAS
¥
i
"
[
-
[]
"
[]
"
L)
-
[
“
[}
" }
. '
[\ L]
1 .
1 L]
. e
.
" ' w
. " .
L] [
[s "
" 1
L . 2
"y H
[] 2
'!" 2
v 3
. 1:
w 3
1
w'." 2
L} 2
w 2
- ‘e 2
- s " 7
w t o 8 ::
- [2
]
» Y " ,3
- ' L] E
- " "
- ".z
! H
] . - §
LN .‘
w 2
' T w8
- 2
[] e
L] ’I
"
w 2 *
2t
2 He
v '
lz .
1
o |
]
- " 9
1 "

Figure 4.

-

SO0 10000 1S000 20000 25000 30000 35000 4QQ0c
LINES OF CODE

Plot of Refined Models and Regression Developed Models

115

version of the additive model was validated with the objective of
producing a model with greater usability. The following simpler
model:
- * *
EAFA 300 + ,039*STLOC + 70*P

demonstrated the following performance:

Rired Avg.Squared Pred. Error Avg.Pred. Error
0.928 94422 -7.48

The accuracy of the simplified model is only slightly different from
that of the original additive model. Therefore, it is well suited
for this environment. Further validation of these models could e

done as future work when more data is available.
Organizational Impact Model

One 1last step in the analysis evaluated the impact of the
organizational factor. The additive form model was extended to
include a categorical variable(MAJCOM) and the GLM SAS procedure,
with MAJCOM defined as a CLASS variable, was run to develop the model
and measure its adequacy. Table 12 demonstrates the results of the
regression analysis including the model coefficients. Notice that
this model produced the highest R>(0.968) of all the models
investigated. The model F value is very large and several times more
than adequate. The mean square error is, by far, the lowest value
encountered in the analysis. All the parameters are significant at
least at the 0.0004 level. The coefficients of STLOC and P changed

very slightly from the basic additive form of the previous section.

117

118

Table 12. Organizational Impact Effort Model

DEPENDENT VARIABLE: HOURS

SOURCE DF SUM OF SQUARES MEAN SQUARE
MODEL 03 25210438 8403479
ERROR 16 840932 52558
CORRECTED TOTAL 19 26051370

MODEL ¥ PR >F R-SQUARE C.V. HOURS MEAN

160 0.0001 0.968 18.7 1225.7

SOURCE DF TYPE III SS F VALUE PR > F

STLOC 1 1053990 20.05 0.0004
P 1 1087373 20.69 0.0003 i
MAJCOM 1 1037910 19.75 0.0004

PARAMETER ESTIMATE .

INTERCEPT 88.8398

STLOC 0.0399

P 61.1284

MAJCOM-0 468.1244

However, the organizational influence in the model became clearly
visible when a coefficient of 468.1243 appeared for the case of
MAJCOM being AFDSDC. This difference could possibly be attribited to
the more complex and larger systems converted by AFDSDC or because of
insufficient attention having been given to conversion planning and
preparation.

A partial wvalidation of the model, with the PRESS statistic,

revealed:
2 PRESS 3525349
RPred =1 - =1 --- = 0,865
Corrected Sum of Squares 26051370

This value of R2 reflects a slight loss which indicates that the

linear fit explains a greater percentage of the original data; 1

however, the model is quite adequate. The residual plot showed a
good scatter with only one point somewhat distant from the rest.
Another adequacy test was to assume the model's independence from the
data and determine predicted hour values based on the data. This

produced the following:

2
RPred ﬁvg.Squared Pred. Error Avg. Pred. Erfgf
0.968 42047 -0.3061

The high accuracy of the model reveals that the organizational factor

is a significant element of effort estimation.

CHAPTER VII

SUMMARY AND RECOMMENDATIONS

Introduction

Overview of Work Accomplished

The work performed in this research parallels the objectives and
procedures originally formulated. A two-phased skeletal methodology
was initially conceived for the study of software conversion data.
Each of the phases, productivity analysis and effort estimation
analysis, was subjected to close scrutiny with a keen eye on new
software development research, since software conversion research was
found lacking. Specific sets of procedures and statistical analyses
were formulated for each of the phases of the study. This gave life
to a methodology for conversion data analysis which permitted a
careful study of conversion productivity and effort estimation by
means of a case study of Air Force Phase IV conversion data from
organizations in different locations working on unique and
independent systems.

Program and programmer attributes became dependent variables as
their impact on programmer productivity was analyzed. Models for
explaining productivity were <constructed and the impact of
organization was also considered. Existing applicable software
conversion effort estimation models were validated for accuracy using
the Phase IV data and environment specific regresssion models were

constructed.

120

121

Significance of Research Qutcomes

This research benefits the computer community since a methodology for

conversion data analysis was formulated. Also, an analysis of
conversion productivity and a study of conversion effort estimation
models were lacking. Most of the work accomplished fits within the
general framework of measurement studies. One of the goals of the
STARS program in the measurement area is to encourage the development
and refinement of measures and models[Dunham and KXruesi, 1983].
Coincident with this goal is a suggestion that this activity be
carried out within the context of on-going software projects. This
research not only fulfilled this goal of STARS, but it was also
conducted within the context of the on-going Phase IV software
conversion project. A conversion programmer productivity case study
had not been previously conducted on this scale. This research
generated a productivity model and a cost or effort estimation model
for the Phase IV environment which may be applicable to other
environments with small systems written in a high level language and
being converted to a highly compatible high 1level language and
operating within a multi-location government organizational
structure. A validation of these models can be accomplished as

future work when more data becomes available.

Summary of Methodology Formulated

The methodology for the analysis of <conversion programmer
productivity and effort estimation emerged from the selection of

appropriate statistical techniques used throughout this study. One

122

of the primary techniques employed was that of regression analysis
which is one of the most widely used techniques for analyzing
multifactor data{Montgomery and Peck, 1982]. The methodology is
naturally based on two separate and distinct phases which encompass
the analysis associated with each of the two aspects of software
conversion chosen for this research.

The first phase of the methodology is the study of conversion
productivity. The five steps which provided the framework for this
phase were:

1) collect and prepare raw data on programmers and programs,

2) perform preliminary analysis of data,

3) construct appropriate file of programmer and program data
elements,

4) build productivity model for exploratory analysis, and

5) perform model validation.

The second phase of the methodology is the study of conversion
effort estimation. This phase also has five steps and parallels the
first phase:

1) collect appropriate effort data,

2) select conversion estimation models,

3) produce effort estimates and compare to actuals,

4) build effort estimation models for specific environment, and

5) perform model validation.

Productivity Methodology

The (first stepA of the methodology for studying conversion
productivity was i:he collection and preparation of raw data. One set
of data required was that of programmer resumes and the other set
consisted of program information. Some programmer qualitative
attribute data was provided in a form unsuitable for data entry and
manipulation. Therefore, an encoding scheme was devised and applied
to the data. A data entry process was selected and the data was
keyed into two separate data files.

The second step of the methodology was an elementary analysis of
the separate data files. Programmer gqualitative variables were
tested to determine pair-wise associations. An examination of the
correlation between the programmer guantitative variables was also
conducted. A productivity measure(LOCPERHR) and a program difficulty
measure were calculated from the program information data. Tabular
summaries were prepared and a variety of elementary st>atistics vere
calculated.

The third step of the methodology was the formation of a new
file which included all the programs converted by only one
programmer. The attributes of the programmer from the programmer
file were also added to each record of this new file, called the
individual productivity f£file. This file provided the basis for
continuing the analysis.

The fourth step of the methodology was that of variable

selection and model building with the individual productivity file.

Multicollinearity, duplication of a variable, inadequacy of data, and
simplicity were used as criteria for candidate variable selection.
The selected qualitative and quantitative wvariables became
independent wvariables with LOCPERHR as the dependent variable.
Regressicn analysis was initiated with this candidate set of
variables. Variables found to be insignificant in the model were
eliminated. The adequacy of the final model was checked by means of
Rz, residual analysis, and reasonableness of the resulting equation.
The resulting model parameters and the significance of their impact
on productivity were discussed. Also, the impact of the variable of
organization was studied by adding it to the model and reinitiating
the regression analysis.

The fifth step of the productivity methodology was that of model
validation. This typically requires the collection of new data.
Since no additional data from the Phase IV program was presently
available, a secondary form of validation, data splitting, was used.
The prediction error sum of squares(PRESS) statistic, a form of data

splitting, was determined and applied to the resulting model.
Effort Estimation Methodology

The first step of the methodology for studying conversion effort
estimation is the collection of appropriate effort data. System
level effort data which included effort hours, 1lines of code, and
number of programs for each system was collected. A designator for

the organization converting each system was also provided.

124

The second step of the methodology was the selection of
conversion effort estimation models of interest. After a review of
the literature, existing significant models were chosen. These
models were studied individually and then represented by an
estimation equation reflecting the characteristics of each model in a
form suitable for using the collected data.

The third step of the methodology was the application of the
data to the models to produce estimates for comparison. The average
hour deviation(predicton error) and R2 were used to evaluate the
accuracy of estimated hours as compared to the actual hours. The
three dest models were selected for further study. The three
equations were fine tuned in an attempt to improve their performance
when compared to the actuals.

The fourth step of the methodology was the construction of
effort estimation regression models based on the collected data. Two
environment specific models were constructed. One model was built
using an exponential form and the other an additive form. The impact
of organization was studied by including it as a variable in the
additive form model and reinitiating the regression analysis.

The fifth step of the effort estimation methodology was the
validation of the models. Since no new Phase IV data was presently
available, the prediction error sum of squares(PRESS) statistic, a

form of data splitting, was used for model validation.

125

PP ———

A t———— e ¥

St

;
i

Summary of Productivity Analysis

The regression analysis performed on the productivity data resulted
in the formulation of a model for explaining the productivity of
programmers within the context of program attributes. The results of
the productivity analysis are true for the sample data of the Phase
IV environment but no conclusions may be drawn about other conversion
environments.

The statistical analysis revealed that there is a slight
increase in productivity as the starting lines of code increase.
This parallels the results of Paulsen who found the same relationship
in the development of products‘ with & high level of reused
code[Paulsen 1981]. Only conversions like Phase IV with a high
percentage of code automatically translated may possibly experience
this phenomenon. An explanation for this behavior may be that the
fixed overhead effort is dominant when most of the code is translated
automatically. This implies that as the numerator of STLOC
increases, the denominator increases only slightly and thus the
quotient of LOCPERHR increases. This phenomenon may not extend to
Phase IV programs greater than 5000 lines which are outside the range
of the case study sample and it definitely does not extend to Phase
IV conversions that are not COBOL-68 to COBOL-74. As the complexity
or difficulty rating of a program increases there is an accompanying
decrease in productivity, as expected.

An interesting manifestation, supporting a discovery by Oliver,

was exhibited by the rating of a programmer's knowledge of a

126

program{Oliver, 1978]. Oliver stated that programmers converting
their own programs may not resist the temptation to "improve" the
program they convert. This thesis indicates that productivity
decreased somewhat as the individual's knowldege of a program
increased; therefore, knowledge of a program seemed to be
unfavorable. This counter-intuitive phenomenon may not apply to
other conversion environments and the result may change as the Phase
IV ccaversion progresses. The finding suggests that programmers with
greater knowledge of a program tend to perform unauthorized
modifications or enhancements during the conversion process either
for personal reasons or as directed by local management.

It is interesting to note that programmers who classified their
experience as primarily of the development type exhibited higher
productivity than maintenance type programmers oOr programmers with
both development and maintenance experience inferring that
development type programmers had the greatest depth of experience.
This may not be true in private industry or other environments. The
data shows, what may be common in many organizations, that the
inexperienced programmers typically start out in maintenance. The
programmer type variable was the only categorical(qualitative)
variable to remain in the final LOCPERHR model. The influence of
academic degree and major were found to be insignificant in the
initial model formulation.

The results indicate that, within the Phase IV environment,

experience with the source language(COBOL-68) is more important than

experience with the target language(COBOL-74). In fact, the sample

127

data produced a model for productivity which completely eliminated
COBOL-74 experience. General programming experience also had a
positive impact on productivity paralleling other studies which
indicate that productivity increases with experience.

The JCL experience variable revealed a peculiarity in the data
which probably only exists in this environment. In most cases the
JCL experience included primarily academic experience for junior
programmers or programmer trainees., This was discovered during the
preliminary analysis showing that JCL experience for intermediate and
senior programmers in Phase IV was typically nil since there is no
JCL for the B3500 environment programs.: Therefore, the JCL
experience in the data is almost all for entry level programmers and
thus produces a negative impact on productivity. JCL experience is
really more of an indicator for an entry-level programmer and nothing
else.

When a programmer's organization entered the regression
analysis, the results indicated support of the findings of
Lawrence[1981] and Jeffery and Lawrence[1979] which state that the
organization has an impact. Even in the context of well-defined
procedures within the Air Force Phase IV Program, one organization
demonstrated a productivity which was on the average about 150 lines
of code per hour higher than that of another organization. Upon
entering the o-ganization variable in the final model, the programmer
type and COBOL-68 experience variables were found to be

insignificant. This indicated that the organization variable

128

129

replaced the combined effect of these two variables. The results
point out that the productivity of organizations varies even within

the context of the same industry as discovered by Lawrence.

The alternate productivity model of "cost units" or hundreds of
lines of code per hour and the alternate model of the log of lines of
code per hour both resulted in a similar set of explanatory or
regressor variables. The most significant difference between these

models and the basic or primary lines of code per hour model was the

presence of the variable MAJOR which replaced the general programming
experience variable. Both alternate models indicated that, within
the Phase IV environment, programmers with computer science, data
processing-MIS, or mathematics/engineering education were more

productive than programmers in the category of other academic majors.

Summary of Effort Estimation Analysis

Five effort estimation models compatible with the software conversion
arena were validated for measurement accuracy. It was surprising
that the Hahn and Stone model, suggested for use by the AFASPO in
Phase IV, exhibited the best performance. The Basili and Freburger
model, based on the «concept of ‘"developed 1lines of code",
demonstrated its applicability to software conversion with acceptable
performance. Though the Wolberg model was based on hour data for
entire projects, a model assuming 50% of the effort for programmer
related activities revealed fairly adequate results. The new FCSC

model manifested low accuracy in comparison to the other models. The

correct usage of the FCSC model was insured by double checking its
application. It is apparent that the FCSC model reguires some
additional study for environments of the Phase IV variety: high
level to high 1level language conversions, good documentation and
fairly compatible source and target environments. Though only one
FCSC conversion class was examined in this research, the results
indicate that a recheck of the other model classes may be in order.

The Hahn and Stone, Wolberg, and Basili and Freburger models
were subjected to wvarious tuning modifications aimed at improving
their performance, within the Phase IV environment. The Wolberg
model never rose above an R2 of 0.74 while the Basili and Freburger
model reported an R2 of 0.823 when a 30% overhead factor for reused
code (code translated automatically) was applied. The Hahn and Stone
model demonstrated its best performance with an R2 of 0.845 when a
coefficient of 20 hours was used with P(number of programs).

Two regression models for the Phase IV environment were built
using the data provided. The first model, of exponential form,
resulted in an R2 of 0.844 and exhibited traits of model adequacy.
However, the additive form model which used both STLOC(starting lines
of code) and P(number of programs) demonstrated an R2 of 0.928. The
R2 for prediction for the additive model manifested about a 16%
"loss”, thus about 76% of the variability in new observations could
be explained with the model. Suspecting an organizational factor of

significance, another additive form model was developed using MAJCOM

as a CLASS variable in the SAS GLM procedure. The resulting equation

130

exhibited an R2 of 0.968 and showed that one organzation, the AFDSDC,

added almost 500 more hours to the predicted effort value. This
again indicated a significant organizational impact. This large
difference in the organizations could originate from the possibly
larger and more complex systems converted by the AFDSDC or from

insufficient pre-conversion preparation.

Management Considerations

It is imperative that further studies in this area be conducted to
increase the community's understanding of the subject of conversion
and to improve management's awareness of problems and opportunities.
The foundation for these efforts is a data base supported by an
effective data collection process. A discussicn of data related
problems experienced during this research and suggested enhancements
of the data collection process as well as suggestions for selecting

personnel for conversion projects are included in this section.

Data Collection Forms

Repeating the earlier discussion of the forms and the encoding
required for the data is not appropriate at this point. However,
some general comments are in order. Open-ended questions, such as
the Formal Training question of the programmer's form, should be
avoided since the variety of possible responses is enormous and an
adequate analysis of the question will be difficult. Questions with

complex conditionals, such as, "If the majority of programs you shall

132

be transitioning are not COBOL, then what type of system are they?",
may cause some confusion. Direct and simple questions should be the
rule and for the most part, this was true of Phase IV questions. The
program information form could have included more questions
requesting additional descriptions of the program, such as, input and
output data, detailing numbers, sizes, types, etc. At the far end of
the spectrum are the conversion data collection forms designed by the
Data & Analysis Center for Software(DACS)[1981]. Though these forms
have been available for about three years, they have not been used
extensively because of the extreme number of details requested. The
DACS should be commended, however, for its efforts to collect

conversion data to establish a data base for use by the community.

Data Submission Procedures

If the forms are well designed but they are improperly completed,
reliable analysis with adequate results will be impossible. A good
form .7t be supported by better instructions and definitions for
completion. Management of all levels must insure that all forms are
well understood and properly completed. Some of the organizational
differences detected in this research may have been due to different

interpretations of the data collection forms and submission process.

Many forms for programs converted were submitted prior to their being

redocumented thus requiring a reporting of zero time for this
activity. This time or effort category was subsequently deleted from

the productivity analysis conducted.

Quality control of the program information forms is a must.
This 1is required, not at the AFASPO which is the collection
repository, but at all of the conversion centers responsible for
completing these forms. The lack of guality control is evidenced by
the forms of one center that typically volunteered an overall hour
total for the program which included the programmer's knowledge code

in the count of total hours.

Controlling the Process

There seemed to be an apparent lack of directive power in regards to
the data collection process. The AFASPO had to practice expert
appeasement skills as many organizations quibbled with the conversion
and data collection process. At least one organization was permitted
to forgo the completion of program information forms. Other
organizations showed their disagreement in the 1little attention
placed on correct completion of data forms. The advantages, to the
entire Air Force, of having sound productivity and effort data for
analysis are apparently not clearly seen by all. This 1is a
management problem which could be present within any large
corporation. Better marketing of ideas and processes, such as data
collection, is a must for software engineers involved in conversion,

as well as in any other area.

133

134

Personnel Selection Considerations

One of the significant management tasks required prior to a
conversion is the staffing of the project team. This thesis research

indicates some criteria that may used by a Phase IV manager to select

the best personnel for the conversion effort, Programmers with
little or no knowledge of the programs to be converted are preferred
since these individuals will be least prone to make modifications or
enhancements during the conversion process thus maintaining the
required level of reduced risk. Maintenance type programmers should
only be used if they are well experienced. Development type
programmers with a few years of experience are primary candidates for
selection. Programmers with a foundation in computer science, data
processing-MIS, or mathematics/engineering are preferred. Knowledge
of both the source and target languages is important; however,
experience with the source language 1s more significant than
experience with the target language. Since the organizational
element is a factor to be considered, an individual with previous
experience in a well managed organization with a good technical

reputation is a better candidate for selection.

Future Research Possibilities

The research conducted serves ideally as a springboard for many

additional investigations. Most related work in the new development
environment may be repeated within the conversion context. This

thesis research parallels studies in the development environment and

the same procedural steps should be repeated when additional data
becomes available. The Phase IV conversion is due for completion in
late 1985 at which time a complete analysis would be in order.

The impact of the organization on the conversion process and on
the programmers’ productivity should be investigated further. A
definition of specific organizational traits should be developed to
assist in the identification of productivity or overall effort
differences. The 1list of traits should include management
techniques, development methodologies, programmer tools, military vs
civilian categorizations, etc.

The productivity of a group of programmers involved in the
conversion of one program should be studied. Methods for defining
group personnel characteristics, such as education and experience,
should be 1investigated. An examination of the personnel
characteristics in relation to the program details and overall
productivity is of interest.

The FCSC model formulation used in the effort estimation
analysis demonstrated low accuracy. An investigation of the model
details to determine reasons for this performance is definitely in
order. The compatible wversus non-compatible(source and target)
environments require the employment of different FCSC model
formulations. These and other parameter choices should be
investigated.

This research involved only COBOL to COBOL program translations.

When the few FORTRAN and Assembler to COBOL program translations do

135

take place, a new analysis of the associated effort and productivity
is a must. Data from other Air Force or non-government projects can
be used to check the COBOL to COBOL translation results or to provide
a source of information for other types of language conversions.

The effort estimation work can be expanded to cover the entire
spectrum of the conversion project. However, data for this analysis
may be difficult to come by. It may still be possible to collect
historical conversion planning and preparation hours of all Phase IV
organizations and initiate procedures for the capture of all post-
conversion effort hours. This data would lead to an investigation of
the applicability of the time-based effort estimation Rayleigh model.

The software conversion realm of the computer field has not
received sufficient attention from researchers and it is becoming
increasingly important that this area not be overlocked. Computer
science researchers are primarily responsible to the computer
community for studying all aspects of the field to determine ways of
improving the availability and usability of the computer resource.
The millions of dollars being spent for conversions every year are an
indication of the significance of conversions in the industry. Much
work 1is necessary to insure that financial resources are being
effectively expended for conversions. The areas addressed by this
research, programmer productivity and effort estimation, and the

recommended research above are but a small part of the overall effort

required.

136

REFERENCES

AHTOQLA, O. AND WILDT, A.R. 1978. Analysis of Covariance. Sage
Publications, Inc., Beverly Hills, CA.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. 1982a. “"Phase IV
Development Center Software Transition Guidance Package.” (Feb.).
AFASPO/PGYW, Gunter AFS, AL.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. 198_b. "Phase 1V Data
Project Plan." (June). AFASPO/PGC, Gunter AFS, AL.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. 1683. "Program
Information Form and Programmers' Resumes." Letter, Apr.).
AFASPO/PGY, Gunter AFS, AL.

AIR FORCE AUTOMATED SYSTEMS PROJECT OFFICE. Undated. "Analyze
Contractor Conversion Techniques and Programming Methodology."
Report No. STC 404. AFASPO/PGY, Gunter AFS, AL.

AIR FORCE DATA SYSTEMS DESIGN CENTER. 1982. “"AFDSDC In-House
Software Transition Plan.” AFDSDC/DMBF, Genter AFS, AL.

AITKIN, M.A. 1974. "Simultaneous Inference and the Choice of Variable

Subsets in Multiple Regression.” Technometrics 16, 2(May),
221-227. -

ARON, J. D. 1969. "Estimating Resources for Large Programming
Systems." Report on a Conference Sponsored by NATO Science

Committee. (Oct.). Rome, Italy. Also in Tutorial: Software Cost
Estimation and Life Cycle Control, L.H. Putnam, Ed. IEEE Computer
Society Press, Los Alamitos, CA, 1980.

BAILEY, J.W. AND BASILI, V.R. 1981. "A Meta-Model for Software
Development Resource Expenditures.” In Proc. 5th Int. Conf. on
Software Engineering (Mar.), IEEE Computer Society Press, LoOs
Alamitos, CA, pp. 107-116.

BASILI, V.R. AND FREBURGER, K. 1981. "Programming Measurement and
Estimation in the Software Engineering Laboratory.” Journal of
Systems and Software 2, 2(June), 47-57.

BOEHM, B.W. 1981. Software Engineering Economics. Prentice-Hall,
Englewood Cliffs, NJ.

BOOCH, G. 1983. Software Engineering with Ada. Prentice-Hall,
Englewood Cliffs, NJ.

BROOKS, F. 1975. Mythical Man-Month. Addison-Wesly, Reading, Mass.

g Ak

138

CHAPIN, N. 1981. "Productivity in Software Maintenance."” In Proc.
AFIPS 1981 Nat. Computer Conf.. vol. 50., AFIPS Press, Arlington,
Va, pp. 349-352.

CHRYSLER, E. 1978. "Some Basic Determinants of Computer Programming
Productivity.” Commun. ACM 21, 6(June), 472-483.

COLLICA, J., SKALL, M. AND BOLOTSKY, G. 1980. "Conversion of Federal
ADP systems: A Tutorial." (Aug.). National Bureau of Standards,
bPublication No. 500-62.

CO0X, D.R. AND SNELL, E.J. 1974. "The Choice of Variables in
Observational Studies.” Applied Statistics 23, 1, 51-59.

CROSSMAN, T.D. 1979. "Taking the Measure of Programmer
Productivity.” Datamation 25, 5(May), 144-147.

DATA & ANALYSIS CENTER FOR SOFTWARE. 198l1. "DACS Conversion Data
Collection Forms." (June). DACS, RADC/ISISI, Griffiss AFB, NY.

DATAPRO. 1983. «DATAPRO Directory of Software. Datapro Research
Corporation, Delran, NJ.

DeMARCO, T. 1982, Controlling Software Projects: Management,
Measurements & Estimation. Yourdon Press, New York, NY.

DEPARTMENT OF DEFENSE. 1983. Software Technology for Adaptable,
Reliable Systems(STARS) Program Strategy. (Mar. 15). DoD
Publications.

DRAPER, N.R. AND SMITH, H. 1966. Applied Regression Analysis. John
Wiley & Sons, Inc., New York, NY.

DUNHAM, J. AND KRUESI, E. 1983. "The Measurement Task Area."
Computer 16, 11(Nov.), 47-55.

FEDERAL CONVERSION SUPPORT CENTER. 198la. "Review and BAnalysis of
Conversion Cost-Estimating Techniques."” Report No.

GSA/FCSC-81/001. (Apr.). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 198lb. “Conversion Contracting
Techniques Associated With Procurement of a Replacement ADP
Hardware System." Report No. GSA/FCSC-81/003. (Sep.). FCSC,

Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1982a. "Federal Conversion
Support Center Conversion Cost Model(Version 2)." Report No.
OSD/FCSC-82/001. (June). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1982b. "Conversion Work Package."
Report No. O0SD/FCSC-82/002. (July). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1982c. "FCSC Conversion Tools
Survey." Report No. OSD/FCSC-83-001. (Oct.). FCSC, Falls
Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1983a. "Conversion Plan Outline.”
Report No. 0SD/FCSC-83-002. (Jan.). FCSC, Falls Church, VA.

FEDERAL CONVERSION SUPPORT CENTER. 1983b. “"Software Conversion
Lessons Learned.” Report No. OSD/FCSC-83/003. (Jan.). FCSC, Falls
Church, VA.

FERNANDEZ, J.D. 1982. "Software Engineering Economics." Technical
Report No. TAMUDCS-82-004-R, (May), Department of Computer
Science, Texas A&M University.

FERNANDEZ, J.D. AND SHEPPARD, S.V. 1984, "Software Conversions to
Ada Reguire Unique Planning.” Submitted to Defense Management
Journal for publication in 1984.

FREUND, R.J. AND LITTELL, R.C. 1981. SAS For Linear Models: A Guide
to the ANOVA and GLM Procedures. SAS Institute Inc., Cary, NC.

FRY, J.P., LOWENTHAL, E., SHOSHANI, A., BIRSS, E., LUM, V., SU, S.,
DRESSEN, P., MARION, R., SWARTWOUT, D., GOGUEN, N., NAVATHE, S.,
TAYLOR, R., KAPLAN, M., SCHINDLER, S., AND YORMACK, B. 1978. "An
Assessment of the Technology for Data- and Program-related
Conversion.” In Proc. AFIPS 1978 Nat. Computer Conf., vol. 47.
AFIPS Press, Arlington, Va, pp. 887-907.

GENERAL ACCOUNTING OFFICE. 1977. "Millions in Savings Possible in
Converting Programs from One Computer to Another.” GAO Report
FGMSD-77-34, (Sep. 15).

GRIM, G.D., EPLER, E.D., AND ANDRUS, W.L. 1978, "Estimating the Cost
of Conversion." In Proc. of Computer Related Information Systems
Symposium. Sponsored by the U.S. Air Force Academy, (Jan.
25-27), Colorado Springs, CO.

HAHN, W. AND STONE, J. 1970. "Software Transfer Cost Estimation
Technique.” (July). MITRE Corporation, Bedford, Mass.

IBM. 1981. 1BM PC Disk Operating System. IBM Corp., Boca Raton, FL.

ITT RESEARCH INSTITUTE. 1979. Quantitative Software Models. Report
for the Data and Analysis Center for Software of Rome Air
Development Center, Griffiss AFB, NY, (Mar.).

IVERSON, G.R. AND NORPOTH, H. 1976. Analysis of Variance. Sage
Publications, Inc., Beverly Hills, CA.

139

JEFFERY, D.R. AND LAWRENCE, M.J. 1979. "An Inter-organizational
Comparison of Programming Productivity." In Proc. 4th Int. Conf.
on Software Engineering, (Sept.), IEEE Computer Society Press,
Los Alamitos, CA, pp. 369-377.

JEFFERY, D.R. AND LAWRENCE, M.J. 198l. "Some Issues in the
Measurement and Control of Programming Productivity."
Information & Management 4, 4(Sept.), 169-176.

JOHNSON, J.R. 1977. "A Working Measure of Productivity." Datamation
23, 2(Feb.), 106-110.

JONES, T.C. 1978. "Measuring Programmer Quality and Productivity.”
IBM Sys J. 17, 1, 39-63.

LAWRENCE, M.J. 1981. "Programming Methodology, Organizational
Environment, and Programming Productivity.” Journal of Systems
and Software 2, 3(Sept.), 257-269.

LYNN, C., RISLEY, J. AND WELLS, R. 1979. "Program Conversion--One
Successful Paradigm.” In Proc. AFIPS 1979 Nat. Computer Conf.,
vol. 48. AFIPS Press, Arlington, Va, pp. 139-146.

MENDENHALL, W. 1968. Introduction to Linear Models and the Design
and Analysis of Experiments. Duxbury Press, A Division of
Wadsworth Publishing Co., Inc., Belmont, CA, p. 210.

MILLS, H.D. 1980. "The Management of Software Engineering Part 1:
Principles of Software Engineering.” IBM System J. 19, 4,
415-420.

MONTGOMERY, D.C. AND PECK, E.A. 1982. Introduction to Linear
Regression Analysis. John Wiley & Sons, Inc., New York, NY.

NAJBERG, A. 1981. ESD Independent Sufficiency Review of Phase IV.
Air Force Electronics Division. Available from AFASPO/PGYW,
Gunter AFS, AL.

NAJBERG, A. 1983. Private Conversation. The Analytic Sciences Corp.,
Reading, Mass. (Oct. 12).

OLIVER, P. 1976. Letter(Nov., 18), subject: "System Conversion.”
To: Deputy Chief, Program Management Office, Headquarters Air
For Data Automation Agency. From: Director, Software
Development Division, Automatic Data Processing Equipment
Selection Office, Department of the Navy.

OLIVER, P. 1978. "Guidelines to Software Conversion". In Proc. AFIPS
1978 Nat. Computer Conf., vol. 47. AFIPS Press, Arlington, Va,
pp. 877-886.

140

e —_ ———

OLIVER, P. 1979a. "Handbook for Estimating Conversion Costs of Large
Business Programs.” NTIS Report AD-AQ065-145. (Feb.)

OLIVER, P. 1979b. "Software Conversion and Benchmarking.” Software
wWorld 10, 3, 2-11.

PAULSEN, L. 1981. "“The Implications of Program Composition and Size
On Development Productivity.” In Proc. 1981 Fall COMPCON, IEEE
Computer Society Press, Los Alamitos, CA, pp. 149-155.

PERLIS, A., SAYWARD, F. AND SHAW, M. 1981. Software Metrics: An
RAnalysis and Evaluation. MIT Press, Cambridge, Mass.

PUTNAM, L.H. 1980. Tutorial: Scoftware Cost Estimating and Life Cycle
Control. IEEE Computer Society Press, Los Alamitos, CA.

REUTTER, J. 1981. "Maintenance is a Management Problem and a
Programmer's Opportunity.” In Proc. AFIPS 1981 Nat. Computer
Conf., vol. 50. AFIPS Press, Arlington, Va, pp. 343-347.

ROSCOE, J.T. 1975. Fundamental Research Statistics for the
Behavioral Sciences. Holt, Rinehart and Winston, Inc., New York,
NY.

RUSHINEK, A. AND RUSHINEK, 5.F. 1983. "An Evaluation of Mini/Micro
Systems: An Empirical Multivariant Analysis.” Data Base 14,
4 (Summer), 37-47.

SAS INSTITUTE. 1982a. SAS User's Guide: Basics. SAS Institute Inc.,
Cary, NC.

SAS INSTITUTE. 1982b. ©SAS User's Guide: Statistics. SAS Institute
Inc,., Cary, NC.

SCHNEIDER, D.B. 1978. Computer Systems Conversion - A Management
Perspective. U.S. Department of Justice Report, (Oct.). NTIS
No. PB-297-604.

SCHNEIDER, G.M., SEDLMEYER, R.L, AND KEARNEY, J. 1981, "On the
Complexity of Measuring Software Complexity.” In Proc. AFIPS 1981
Nat. Computer Conf., wvol. 50. AFIPS Press, Anlington, Va, pp.

317-322.

SCHNEIDER, V. 1978. "Prediction of Software Effort and Project
Duration - Four New Formulas.” SIGPLAN NOTICES 13, 6(June),
49-59.

SCOTT, R.F. AND SIMMONS, D.B. 1974. "Programmer Productivity and the
Delphi Technique." Datamation 20, 5(May), 71-73.

141

142

SCOTT, R.F. AND SIMMONS, D.B. 1975. "Predicting Programming Group
Productivity: A Communications Model." IEEE Transactions on
Software Engineering SE-1, 4(July).

SHNEIDERMAN, B. AND THOMAS, G. 1982. "Automatic Database System
Conversion: Schema Revision, Data Translation and Source-to-
Source Program Transformation." In Proc. AFIPS 1982 Nat.

Computer Conf. vol. 51. AFIPS Press, Arlington, VA, (June
7-10), pp. 579-587.

SKALL, M.W. 1982. "Guide to Contracting for Software Conversion
Services." National Bureau of Standards Publication 500-90,
(May) .

WALSTON, C.E. AND FELIX, C.P. 1977. "A Method of Programming
Measurement and Estimation.” 1IBM Systems J. 16, 1, 54-73.

WIENER-EHRLICH, W.K., HAMRICK, J., AND RUPOLO, V. 1981.
"Applicability of the Rayleigh Model to Three Different Types of
Software Projects.” In Proc. IEEE 1981 Fall COMPCON. IEEE
Computer Society Press, Los Alamitos, CA, (Fall), pp. 128-148.

WOLBERG, J.R. 1981, "Comparing the Cost of Software Conversion to
the Cost of Programming."” SIGPLAN NOTICES 16, 4(Apr.), 104-110.

WOLBERG, J.R. 1982. "A Costing Model for Software Conversions.”
Software Practice & Experience 12, 1l(Nov.), 1043-1049.

WOLBERG, J. R. 1983, Conversion of Computer Software. Prentice-
Hall, Englewood Cliffs, NJ.

WOLVERTON, R.W. 1974. "The Cost of Developing lLarge-Scale Software.”
IEEE Trans. on Computers C-23, 6(June), 615-636.

WOODFIELD, S.N. SHEN, V.V. AND DUNSMORE, H.E. 1981, "A Study of
Several Metrics For Programming Effort." Journal of Systems and
Software 2, 2(June), 97-103.

GLOSSARY

ANALYSIS OF VARIANCE(ANOVA): The analysis of variance is a
special case of general linear regression analysis. There are
two primary uses of ANOVA: development of a regression(ANOVA)
model where all the variables are of the categorical(qualitative)
type and hypothesis testing during normal regression analysis.
The ANOVA model typically determines the affects of the the
various levels of the <categorical variables and their
interactions on the overall average of the dependent variable.
The results of the ANOVA include the estimated
coefficients(parameters or effects) of each categorical variable
with associated measures of significance. The hypothesis tested
by the ANOVA is that all the coefficients or parameters are 0.
The F statistic is used for this test and if the probability of
making a Type I error is 1less than the selected 1level of
significance then the null hypothesis is rejected and significant
coefficients are assumed to exist.

AVERAGE PREDICTION ERROR: The average prediction error is used
when validating the predictive power of a regression model with
new data. The sum of the deviations(differences between the
predicted and observed values of the dependent variable) is
calculated and then divided by the number of data points in the
sample. It is not expected that the average prediction error be
equal to zero but that it be relatively close to zero indicating
approximately unbiased predictions.

AVERAGE SQUARED PREDICTION ERROR: The average squared prediction
error is used when validating the predictive power of a
regression model with new data. It is calculated by first
determining the sum of the squared deviations(differences between
predicted and observed values) and then dividing by the number of
points in the sample. The result may be compared to the mean
square error which can be thought of as the average variance of
the residuals(deviations or errors) from the model's fit. The
difference between the average squared prediction error and the
mean square error should not be excessive for one to conclude
that the regression model 1is 1likely to be successful as a
predictor.

CATEGORICAL VARIABLE: Categorical variables are dqualitative
variables which fit research subjects into categories in which
the notion that one category is higher than or lower than another
category can not be substantiated. A typical categorical
variable .5 that of sex--male or female.

CHI-SQUARE TEST: Chi-square tests are typically called goodness
of fit tests since they are used to determine whether an observed

144

frequency distribution departs significantly from a hypothesized
frequency distribution. Chi-square tests are also used with
contingency(2 by 2) tables to determine whether two
qualitative(categorical) variables are related. A measure of
association(correlation) between the variables is normally
computed with the Chi-square test for a contingency table. Also,
a probability of a Type I error is provided to test the null
hypothesis that the variables are independent or unrelated. A
probability higher than one's selected level of significance
indicates that the null hypothesis of independence can not be
rejected.

CORRELATION: The term correlation refers to the degree of
relationship or correspondence between two variables. Correlated
variables are those which tend to vary together. A correlation
coefficient is a measure between -1 and 1 which indicates the
strength and direction of the relationship existing between the
two variables. There are several different kinds of correlation
coefficients but they have a common meaning. The closer to
one(+l or -1) the coefficient is, the greater the degree of the
relationship or correlation. A correlation matrix provides a .
method for describing the correlation between pairs of several
variables where the diagonal is always one.

F STATISTIC: In regression analysis, the model F statistic is
determined by computing the quotient of the mean squares of
regression(model) divided by the mean squares of the
error(residuals). If the model prov.ded a good fit then one
would expect the F statistic to be a few times larger than the
critical F wvalue. The critical F value may be calculated by
using the degrees of freedom of the mean squares, a selected
level of significance, and the F distribution or table of F
values. This higher F statistic allows one to reject the
associated null hypothesis that all of the coefficients or
parameters of the model are O, With SAS, the F distribution
probability associated with the F statistic is provided for
comparison with one's level of significance such that if the
probability is greater than the selected level of significance
one can not reject the null hypothesis that all of the
coefficients are 0. A partial F statistic is also used to test
the null hypothesis that one specific coefficient or parameter is
6. The partial F statistic is provided by SAS for each of the
variables in the model. 1If the variable being tested is x then
the partial F statistic is computed by first determining the
measure of the sum of squares of the model(regression) given that
all the other variables(except x) are in the model; that is, the
"extra sum of squares” due to x. This "partial" sum of squares
is then divided by the mean squares of the error(residuals) in
the model to calculate the partial F statistic.

FACTOR ANALYSIS: Factor analysis is a method used to study the
interrelationship between quantitative(continuous) variables with
the objective of reducing the number of variables to a smaller
set that retains the original information as much as possible.
The new variables(factors) are exact mathematical transformations
of the original data and are constructed on the basis of the
interrelations exhibited in the data. The factors are usually
extracted in such a way that one factor is independent from the
other.

GLM SAS OUTPUT INTERPRETATION: There are basically four parts to
the GLM procedure output provided in this thesis research.

1. Regression model ANOVA results. There are three types of
sum of squares provided by the basic ANOVA table:
model (regression), error(residual) and corrected total(total).
Each sum of squares has an associated degrees of freedom(DF).
The DF for the model sum of squares are equal to the sum of the
number of quantitative variables in the model plus the number of
levels(categories) minus one for each qualitative variable
present in the model. The DF for the total sum of squares are
equal to the size of the sample(n) of data points minus one. The
DF for the error sum of squares are equal to n(sample size) minus
the DF for the model sum of squares minus one. The model or
regression mean square is computed by dividing the model sum of
squares by the associated DF. The error or residual mean square
is computed by dividing the error sum of squares by the
associated DF.

2. Basic model statistics. The model F statistic is calculated
by determining the ratio of the model mean square and the error
mean square. The probability(PR) or p value associated with the
F statistic indicates the probability of obtaining this value of
F or one larger by chance alone or this probability can be
interpreted in relation to one's chosen level of significance,
such that it indicates the probability of committing a Type I
error. If the probability is higher than one's level of
significance, one can not reject the null hypothesis that all the
model parameters(contributions) are 0. The R-SQUARE is the
coefficient of determination. C.V. 1is the coefficient of
variation computed by dividing the square root of the error mean
square(considered the average model variance of the residuals) by
the mean of the dependent variable and expressing it as a
percentage. This measure indicates that the residual variation
is x% of the mean of the dependent variable. Finally, the
overall mean of the dependent variable is provided.

3. Partial sums of squares. The TYPE III SS represent the
partial sums of squares for each of the variables. They are
specifically defined as the "extra sums of squares"” due to the
addition of the variable to the model given that all the other

145

P

variables are already in the model. The DF associated with each
variable are equal to 1 for quantitative variables and the number
of categories minus one for each of the qualitative variables.
The F VALUE represents the partial F statistic for testing the
null hypothesis that the coefficient(contribution) of the
variable is O. The probability associated with the partial F
statistic has the same meaning as that of the model F statistic
except the test is for a single coefficient.

4. Estimates of coefficients. The last section of the GLM
output presents the model parameters. The intercept is listed
first followed by the coefficients of all the variables in the
model. Categorical variables are depicted with one coefficient
for each level of the categories minus one. The affect of the
last category of each of these variables is included in the
intercept term. It should be noted that each category's
coefficient is associated with a binary value, such that only the
category represented by a particular subject provides an impact,
that is, a value of 1 is multiplied by the coefficient.

MULTICOLLINEARITY: Multicollinearity defines the problem of
linear dependencies or correlations between the independent
variables in regression analysis. Since the variables are not
trully independent, the method of least sguares will produce poor
estimates of the individual model parameters. When the variance
inflation factors(see definition) exceed 5 or 10, the associated
regression coefficients are poorly estimated because of
multicollinearity. The simplest method for dealing with this
problem is to remove one or more of the correlated independent
variables and re-start the analysis.

MULTIPLE CORRELATION COEFFICIENT; The multiple correlation
coefficient is the square root of R"(see definition).

PREDICTION ERROR SUM OF SQUARES(PRESS): The PRESS statistic is
used as a form of data splitting, when other forms are not
feasible, in model wvalidation. To calculate PRESS, an
observation i is selected and removed and the regression model is
fitted to the remaining n-1 observations. This new model is used
to predict the withheld observation Yy and the prediction
error(e,) is determined to be the difference between the actual
observation and the predicted value. The same procedure is
followed for each observation. Finally, the value of PRESS is
calculated as the sum of all the prediction errors squared. The
PRESS is then used to calculate R**2 for prediction which
measures the model's ability to predict new observations.

RZ: The coefficient of determination(Rz) is typically used to
give the value of the model’'s predictive or explanatory power.
Its value has a range between 0 and 1 with a value closer to 1
indicating a better model. The coefficient of determination is

146

calculated as the ratio of the sum of squares due to the model to
the total sum of squares. Its square root is generally called
the multiple correlation coefficient in multiple regression
analysis.

R2 PREDICTION: The R2 for prediction is defined as the percent
variability in the new data explained by an existing model. It
is calculated as 1 minus the ratio of the error sum of squares to
the total sum of squares. It is typically used to assist with
the validation of an existing model with new data. This measures
how well the model predicts new observations as compared to how
it fits the original data.

REGRESSION ANALYSIS: Regression analysis is a statistical
technique to determine the equation of the line or curve which
minimizes the deviations between the observed data and the
regression equation wvalues. Regression is based on the least
squares principle of minimizing the error sum of squares. The
regression model that results has predictive or explanatory power
which is typically measured by R**2, the F statistic and the
reasonableness of the parameters estimated. Given a set of
variables, there is probably more than one model that fits the
data well with a different group of variables in the model. If
several variables are involved, the term multiple regression
analysis is used.

SIGNIFICANCE LEVEL: The significance level 1is the degree of
uncertainty about a particular statistical statement under
specified conditions. Significance 1levels are typically
signified by alpha and common values are 0.10, 0.05 and 0.0l.
The significance level is normally associated with the Type I
error probability, such that, if the calculated probability is
higher than the level of significance one can not reject the null
hypothesis since it may be true.

SUMS OF SQUARES: The total sum of squares for any data may be
computed as the sum of squares of the differences between each
dependent variable value and the mean associated with the
dependent variable. The total sum of squares has two components:
the sum of squares explained by regression and the sum of squares
unexplained by regression. The sum of squares explained by
regression is typically called the model or regression sum of
squares and is calculated as the sum of squares of the
differences between the predicted y, and the mean of y(actual).
The sum of squares unexplained by réegression is typically called
the error or residual sum of squares and is calculated as the sum
of squares of the differences between the predicted y, and the
actual y.. The mean square value of each component oflthe total
sum of %quares is wusually calculated by dividing each sum of
square by the associated degrees of freedom. The ratio of the
model or regression mean square to the error or residual mean
square determines the F statistic for model hypothesis testing.

147

l'll-""""""""'-"""""""""-'-"'-lllI!ll-"'F!-lll-l-!-n-—----::*

VARIANCE INFLATION FACTOR(VIF): The variance inflation
factor(VIF) is typically used to detect multicollinearity. It
can be shown that the variance of each estimated partial
regression coefficient is "inflated” by the factor 1/(1-RI),
where RI is the coefficient of determination of each of the
independent variables as related to all other independent
variables. The variance is larger by that factor than it would
be if all independent variables were uncorrelated(RI=0). The SAS
GLM procedure prints the reciprocal(tolerance value) of the VIF.
A VIF that exceeds 5 or 10 implies multicollinearity and requires
investigation.

148

APPENDIX A

DETAILS OF CONVERSION EFFORT/COST ESTIMATION MODELS

Federal Conversion Support Center Hybrid Model

The FCSC model was originally and formally called FCSC Hybrid
Conversion Cost Model since it is a combination of several models and
ideas[Federal Conversion Support Center, 198la; 1982a]. The model
was designed to cover a wide spectrum of conversion costs, from
planning to system testing and documentation. The FCSC model is
concerned not only with costs for staff resources but also with
machine and miscellaneous resources. For those tasks that are very
site dependent or unique for each conversion effort, only guidelines
for costing are provided.

The FCSC model's estimate for conversion planning and analysis

is a function of the size of the project and the detail of the
analysis and planning required. Assuming conversion to a
noncompatible target environment, the staff-days required are

calculated as follows:

SD = 5*S + P + J
where,
SD = number of staff-days
S = number of systems
P = number of programs(l SD per program)
J = number of job streams(l SD per job stream).

149

150

For conversions to a highly compatible target environment, the staff
days are reduced for each ingredient of the equation, such that
SD =S + P/2 + J/2.

For conversions to environments that have other degrees of
compatibility, the number of staff-days per system may be varied
between 1 and 5, and the number of staff-days per program and per job
stream between 1/2 and 1.

The FCSC model presents an equation for estimating the effort

involved in work package identification and preparation. The

resources required, whether or not the target environment is
compatible, are calculated as follows:

SD = 3*s + (P + F + J)/10

where S, P, J, and SD are defined as above and

F = number of files.
Depending on the degree of <compatibility and work already
accomplished the constants 3 and 10 may be changed. Note also that
the estimate includes 3 staff-days for every system and 1 staff-day
for every 10 system components.

The test data generation estimates, including the transfer of

test files to the target machine, take into consideration the status
of the documentation and the amount of code exercised by the test
data. The formula is illustrated as:

SD = [(5*%P)+(2*F)]*(TDR~TDE)*[1.0-(DOC/3)]

where the model estimates 5 staff-days per program(P) and 2 staff-

days per file(F) and

TDR = percentage of code the test data is required to
exercise

TDE = percentage of code the test data currently exercises

DOC = percentage of adequate and up-to-date documentation.

When TDR = TDE or TDE > TDR, it is estimated that about 1 staff-day
per program will be necessary to validate the existing data and its
percentage of execution(SD =1 * P),.

The FCSC model equation for application program and system

software conversion, is based on several factors. One such basis is

complexity. The model documentation provides a guideline matrix for
assessing the intrinsic complexity of the software inventoried. The
complexity is basically divided into 5 classes identifying programs
and system software eligible for(in FCSC's terminology):

1) reprogramming

2) major program logic medification

3) minor program logic modification

4) simple syntax translation

5) software transference

Another basis for the equation is programmer productivity which
must be quantified. In order to do this, the FCSC model uses the
three development tasks of design analysis, programming and esting.
A new development effort has typically been found to require 40% for
design analysis, 20% for programming and 40% for testing.

From its study, the FCSC has developed assumptions as to the

percentage of effort of each of these three tasks for each of the 5

151

complexity classes listed above. For a class 1 conversion, the total
effort relative to new development is reduced to 80% and is divided
as follows: 30% for design analysis, 15% for programming and 35% for
testing.

To summarize all five complexity classes as listed by the FCSC

one can provide a matrix of percentages such as those in Table 13

Table 13. Task Percentages for FCSC Complexity Classes

Effort Relative To Design

Class New Development Analysis Programming Testing

1 0.800 0.30 0.150 0.350

2 0.500 0.20 0.100 0 200

3 0.160 0.04 0.020 0.100

4 0.035 0.01 0.005 0.020

5 0.001 0.00 0.000 0.001
Another basis for program and system software effort estimation
is the documentation status. In order to avoid excessive

subjectivity in estimating the percentage of adequate, up-to-date
documentation that exists, it is preferable to estimate the
documentation status at as detailed a level as possible. However,
summarizing the status o¢f documentation on an overall system level
may suffice. The FCSC model guidelines present a total of 10
documents which must be rated between 0(no documentation exists) and
10(complete set exists and is uyp-to-date). The maximum possible
total of all would be 100%; however, the typical overall total status

is well below 100%.

152

The last basis is the productivity rate which is highly
subjective since it is wusually difficult to determine what is
included in the measurement; i.e., the entire project or only the
conversion of the software, or manual, automatic or mixed software
translation. The FCSC model uses the RADC calculated median manual
productivity rate of 12.6 debugged lines of new development code per
day for a development programmer.

Each FCSC complexity class may then have an average manual
conversion productivity rate calculated as follows:

BR * NDE

MCPRS = - - —
{(1.0 - (DOC/2)) * DES] + PES + TES

where,

MCPRs = average manual conversion productivity rate in number of
debugged LOC manually converted per day for each
complexity class

DOC = documentation status percentage(as a fraction)

BR = baseline productivity rate for new development in debugged

LOC developed per day = 12.6
NDE = total effort required for new development = 100

s = complexity class: 1, 2, 3, 4, or 5

DES = design effort required for each class:
1 =>30; 2=>20; 3=>04; 4=>01;5=>0
PES = programming effort required for each class:
1 =>15; 2 = 10; 3 => 02; 4 => .5; 5 => 0
TEs = testing effort required for each class:

1 =>35;2=>20; 3=>10; 4 =>2; 5 =>.1

153

The FCSC model presents a table with MCPR calculated for each

complexity class for various levels of documentation status.

The FCSC 1982 report also indicates that while no empirical data
exists on the actwal productivity rate of an automatic translator,
for estimating purposes it can be assumed to be between the manual
productivity of class 4 and class 5 type conversions. Therefore the
FCSC uses 630 debugged LOC per day as the productivity of an
automatic translator. The FCSC also assumes the following typical
ranges for correct automatic translation percentages for each of the

5 classes:

1 -—- 0 - 25% 2 ~-- 20 - 75%
3 -- 65 - 90% 4 -- 80 - 100%
5 -- no automatic translation

The FCSC model's equation for calculating the staff-day resource
requirements can now be defined. The resources reguired are
calculated for each complexity class as follows:

= * - *
SSDs LOCs (1 Ts) + LOCS T

MCPR ACPR
where s

SSD5 = staff-day resources required for each complexity class(for
each system, or whatever breakdown used by the estimator)

LOCs = LOC for each conversion complexity class including comment
lines for all application programs and system software

s = conversion complexity class: 1, 2, 3, 4, or 5
Ts = percentage(expressed as a fraction) of LOC capable of being

correctly translated by an average automatic translator.

Typical ranges are shown above. T = 0 if no automatic
translation is used.

MCPR

as defined earlier

ACPR

average automatic conversion productivity rate for an
automatic translator = 630 LOC per day.
Finally, the total staff-day resource requirements for

application program and system software conversion can be determined

by summing the results of all classes as follows:

SD = Z SSDs
s=1,5

The next task for which the FCSC model provides estimates is

that of data file and data base conversion. The complexity of this

conversion directly impacts the total effort. Therefore, the FCSC
chose to define complexity classes in this area also. Some
guidelines for determining the appropriate class are provided in
table form by the FCSC. The following definitions of classes apply:

E ~- A file is considered to be in class E if the source and
target environments are fully compatible and conversion is
not really required. In this case, a before and after file
compare should be performed.

D -- A file is considered to be of simple complexity(Class D) if
the conversion is character-to-character, from source to
target character set, on a one-to-one basis. Flat
physically sequential files fall in this category.

C -- Class C files are of average complexity and are involved in

character-to-character, character-to~word, or word-to-word

155

conversions with the conversion parameters embedded in the
files. Examples are compressed or variable length record
files.

B -- A file is of class B(complex complexity) if the conversion
required is character-to-word, word-to-word, or word-to-
character with the conversion parameters external to the
file. Examples are binary and floating point files.

A -- Class A(very complex conversion) files are DBMS files or
data bases or can be combinations of any of the above
mentioned file features.

The first step in calculating the data file and data base
conversion staff-day resources required is to calculate the overall
percentage of documentation(DOC). Secondly, calculate the average
manual productivity rate(MCPR) for the data description or data
dictionary language if they exist, for each class of 1 through 5.
This is identical to the MCPR calculation given earlier for
application program and system software. Thirdly, using this MCPR
and the ACPR of 630 given above, calculate the staff-day resource
requirements(SSD) for each software complexity class 1 through 5
using the SSD formula given earlier and let SSD equal to staff day
resources for these calculations(DSD). Fourthly, classify the file
and data bases by conversion complexity class of A through E as
defined above and calculate the staff-day resources for each file
complexity class as follows:

FSD_ = (Ff * FCFf) * (1.0 - (DOC/2))

£

where,

156

F,. = number of files to be converted for class £

f = file complexity class: A, B, C, D, or E

FCF_ = file conversion complexity factor for each £
class(class A=5, B=3, C=2, D=1, and E=.25)
DOC = documentation status
FSD, = staff-day resources required for file conversion for
each file complexity class
Finally, one must sum the FSDf for all file complexity classes and
the DSDs for conversion of any data description or dictionary

languages for the five software complexity classes as follows:

SbD=Z FSD_ +Z DSD

£=A,E © s=1,5 °
where:
FSDf = staff-day resources for file conversions of f classes
as defined above
DSDs = staff-day resources for conversion of data languages
for each class 1 through 5 as defined for SSDS above
SD = total effort for file and data base conversion

The next task receiving attention by the FCSC model is that of

operation control language(OCL) conversion. The methodology used for

estimating OCL conversion is identical to that used for application
program and system software conversion. The lines of OCL code are
used as input for estimation. Based on the assumption that each job
stream consists of lines of OCL, the OCL can be estimated by assuming

an average number of lines of OCL for each job stream. After the

lines of OCL are calculated, one calculates the overall percentage of

158

documentation(DOC) and the MCPR for each class. The staff-day
resources(SSD) for each class are calculated and then summed as
before to <calculate the staff-day resources(SD) for the OCL
conversion for all classes. The formulas are the same as those for
application program and system software conversion.

The next task estimated is that of system testing which is

defined as the full application system testing using test data. The

duration of the system testing is compounded by a rerun factor due to
the fact that the testing may have to be restarted many times. The
staff-days(SD) required, assuming a non-compatible target
environment, are estimated to average about 1 SD per 4 job
streams(J), 1 SD per 2 programs(P), 1 SD per 2 systems(S) and 1 SD
per 80 system components(P+F+J, where F=files). This is multiplied
by a rerun factor(RE) which indicates the number of probable reruns
necessary to achieve a Ssuccessful test. Typically, conversions
require 5 to 10 reruns. The staff-days(SD) are thus calculated as
follows:
SD = [J/4+P/2+5/2+((P+F+J)/80)1*[1+(RE/10)].

In the case of a more compatible target environment less testing is .
anticipated before reaching acceptable output. 1In this case, testing
is to average 1 SD for every 10 systems(S) and files(F) and 1 SD for
every 80 system components. This is multiplied by a rerun factor (RE)
that is lower than for a non-compatible case. Thus for a more

compatible environment one uses: '

SD = [((S+F)/10)+((P+F+J)/80)]1*[1+(RE/10)].

159

The next task detailed by the FCSC model is that of

redocumentation. This redocumentation refers not to specific unit

tasks but rather to overall system and project level redocumentation

effort required. It is assumed that both technical and clerical
staff are required here. Assuming conversion to a non-compatible
target environment, the technical staff-day (TSD) resource required
for the technical ©portion of the redocumentation requires
approximately 1 staff-day for every 4 programs(P) and 1 staff-day for
every system(S). A percentage factor(RCOR), typically 10%(expressed
as a fraction), is added to the formula. RCOR represents the
coardination effort among the technical, clerical and the entire
project staff. Documentation percentage status(expressed as a
fraction) is also included. Thus,

TSD = (P/4+5)*RCOR*DOC.
The clerical staff resource requirements(CSD) require approximately
twice as long as those for the technical staff as follows:

CSD = (P/2+2*S)*RCOR*DOC.
Thus the total staff days(SD) for redocumentation are calculated as
follows:

SD = TSD + (CSD,
This total could be adjusted if a high degree of compatibility were
present.

The next FCSC model task is acceptance testing which involves

the converted programs, revised documentation and procedures and
converted live data. The objective of this test is to achieve an

acceptable comparison of outputs against the source system results.

160

Typically, acceptance testing requires a basic level of staffing for
the entire duration of the test and a high level during the beginning
of the test cycle. Therefore, an exponential function is required to
express this pattern.

Assuming conversion to a noncompatible target environment, the
staff-days(SD) resources required for the basic or constant level of
staffing is usually about 1 staff-day for every 20 systems(S) for the
duration(DUR) of the test. In acceptance testing, only the
programs(P) and files(F) grouped together need to be tested. The
resources required are about 1 SD for every 5 programs and files.
This is multiplied by a negative exponential function to temper the
effect of a long duration. Thus,

SD = [DUR*(S/20)]1+[(P+F)/5)*(1-e~ (PUR/20)y7

The next three tasks of the FCSC model are site preparation,

system transition(complete parallel, immediate cutover, or phased

parallel) and training. No estimating egquations are provided since
there is a great deal of wvariability in these three tasks for
different organizations, environments and conversion efforts.

The next task addressed by the FCSC model is that of conversion

management and administrative overhead and/or contract administration

and support. The management to technician ratio(typically 1:10) must
be determined by the organization to perform the conversion. This
ratio is only concerned with the organization's own labor force. The
contractor's management is absorbed in contractor rates, if any

activity is contracted out.

The management to technician ratio(MIR), expressed as a
fraction, is applied to the total in-house staff resources(TINSD) for
the following tasks only:

* conversion planning and analysis

* conversion work package identification and preparation
* test data generation and validation

* application program and system software conversion

* data file and data base conversion

* operation control language conversion

* redocumentation

* system testing

* acceptance testing.

For those tasks that are contracted, an additional 10% is added
for contract administration and support. This 10% is applied to the
total contractor staff-day resources(TCONSD) estimated. Therefore,
the total resources for conversion management and administrative
overhead are computed as follows:

SD = (TINSD*MTR)+(TCONSD*.10).

The FCSC model briefly discusses conversion aids since they can
significantly reduce the time and cost of a conversion project.
There are no typical costs for conversion tools. Each case must be
separately addressed so no formulas can be derived for this task.

Once the staff-day resource requirements for the baseline
conversion tasks are completed, their costing may commence. The FCSC

1982 report contains salary figures for various grades of federal

161

=3

e ehras e

civilian employees. These could be used to calculate the average in-

house personnel rate(INS). An average contractor rate(CON$S) for a
typical conversion effort in 1982 is about $60,000 per staff year or
$280 per staff-day. The FCSC uses 213.2 staff-days per year and
17.77 staff-days per month. The staff resources costing($COST) is
then based on the total staff-days(SD) and the percentage of work to
be done by in-house resources(IN%):

SCOST = (SD*IH%*IHS)+(SD*(1-IH%)*CONS).

For machine resource estimating and costing, the FCSC provides a
table which illustrates the baseline conversion tasks and the
expected number of machine hours a conversion programmer is assumed
to use per staff-month of effort. The machine resources in machine-
hours(MH) are calculated by dividing the total SD for each task by
17.77 and multiplying the result by the number of machine-hours
assumed to be used per staff-month(MHR). This is illustrated as :

MH = (SD/17.77)*MHR.

The machine resources in machine cost(MCOST) are calculated by
multiplying MH by the percentage of use for the source machine(SM%)
and the target machine(TM%) and multiplying the results by the
average hour rate for each machine(SM$ and TM$). Thus,

MCOST = (MH*SM%™*SMS$)+(MH*TM%*TMS) .
The last item included in the FCSC model is miscellaneous

resource estimating and costing. No estimating equations can be

given for this area for obvious reasons. Some items to be considered

under this task are suggested in the FCSC document.

e

163

u Hahn and Stone Model

The earliest attempt to define a parametric conversion cost
estimation technique appears to be that Hahn and Stone of MITRE
Corporation[Hahn 2nd Stone, 1970]. The cost estimation model
includes three cost categories: cost of transferring programs(CP),
cost of transferring data(CD) and other costs(co) such as documenting
the programs. The model is represented by an equation for total
cost(CT):

C.,=¢C +CD+C

T P 0

The cost of ¢transferring programs is made up of two major

components: the cost of manually transferring(CM) and the cost of
automatically transferring(CA) all or part of a program. This cost
is expressed as :

Cc =CA+C

P M

The cost of automatic transfer(CA) can not be further defined since
it will wvary with the type of transfer technique(redesign,
reprogramming, or recoding) and the differences between the source
and target environments.

The MITRE report defines the cost of manually transferring
programs as the largest single cost of the transfer process. This
cost(CM) uses three items in its calculation: (1) number of
instructions(lines) which must be manually transferred(I); (2)the
rate at which this can be done(lines/man—day)(RT); and (3)cost of

manpower per man—day(CMD) :

Cy = (I/Rp) * Gy

|
|
|

In order to determine an equation for calculating the rate of
transfer(RT), Hahn and Stone of MITRE performed an extensive review
of the literature on estimation related to new developments, analyzed
program development data from several sources including the federal
government and MITRE. It was found that the number of statements
which can be manually transferred from one computer t¢ another in one
man-day is a function of several variables as described below.

The basis for analysis was determined to be the new development
production rates. Some "rules of thumb" from the 1literature
indicated rates of one instruction/hour(8 instructions per man-day)
and 200 instructions/man-month(l0 inskructions per man-day). The
development data analyzed resulted in estimates of production
rates(instructions/man~day) for FORTRAN, COBOL and JOVIAL, whose
respective mean rates were 4.5, 5.8 and 5.7. Since conversion of an
existing program does not include all the functions normally
associated with development projects, the above production rates had
to be modified to establish a baseline conversion production
rate(RBC) and ¢ program testing production rate(RBT).

By studying the division of effort for the tasks required for
new developments and the data of some conversion projects, a division
of effort was calculated for redesign, reprogramming, recoding and
conversion program testing. The conversion production mean rates
were then calculated and are shown in Table 14.

To compensate for critical aspects of the conversion effort, a

number of degradation factors were developed which add to the total

164

165

Table 14. Hahn and Stone Conversion Production Mean Rates

R R R R !

RedSSign Reprbgram ReBSde TBLt i
FORTRAN 8.2 11.3 22.5 14.1
COBOL 10.5 14.5 29.0 18.3
JOVIAL 12.5 17.3 34,5 21.7

effort required to transfer programs. Complete, accurate and up-to-
date documentation is necessary for efficient transfer of programs.
A suggested 1list of documentation that should be available is
provided in the report. The documentation factor(DFl) requires an
« v

increase in manpower for various documentation status categories.

These are shown in Table 15 below.

Table 15. Hahn and Stone Documentation Status Categories

Category % Increase in Effort(DFl)
Excellent 0%
Good 25%
Average 50%
Poor 75%

A program instability factor(DFz) is used to account for the
increase in effort necessary if modifications of the program will
take place during the transfer. The extent of past modifications of
the program is used as a guide to determine a modification level for

a D_, rating. The levels suggested are shown in Table 16 f

F2

Table 16. Hahn and Stone Modification Level Ratings

166

Modifications % Increase in Effort(DFZ)
Nil 0%
Trivial 5%
Some 10%
Extensive 15%

A third degradation factor used in the MITRE model is that of
system integration(DFa). Program complexity has some impact on the
amount of resources required to transfer programs from one
environment to another. Based on some data analysis, Hahn and Stone
propose a degradation factor of .016*N where N is the number of
subprograms in the programs being converted. This factér becomes a
percentage that is used to increase the amount of testing required.

Now the total rate of transfer may be defined as

RT = I/MDT where MDT is the total number of man~days
required. With the factors given above then:
MDT = I/RBC+(DF1*I/RBC)+(DF2*I/RBC)+I/RBT+(DF3*I/RBT) where,

I/R_ . = man-days for baseline conversion

BC
*
Dpy *1/Rpe

mandays for documentation degradation factor
DFZ*I/RBc = mandays for program instability factor

I/R,,., = mandays for baseline test

BT

DPS*I/RBT = mandays for system integration factor

Substituting MDT into the RT equation results in:

»
Rac ” Rpp

S -

r1*Pr2)

Rpc(1#Dpy) *Ry (14D

The data transfer costs are typically small in comparison to

program transfer costs. No specific method of computation is
provided by Hahn and Stone. The other costs involved in a transfer
are quite numerous and varied so the model only mentions some
functions that must be considered for a total costing calculation.
Some of these are training, facilities, planning and management.

The Hahn and Stone or MITRE model can then be summarized as
follows:

Rpg(1#Dpy) *Rpy (1¥Dgy *Dpp)

C.,. = Z1I * - C
T R__*R MD
BC "BT

+CD+CO

The summation symbol indicates the sum over all the programs in the
inventory and all the symbols retain their meaning as defined above.
It should be reemphasized that I represents only the LOC to be

manually converted.

Grim, Epler and Andrus Estimation Method

Grim, Epler and Andrus reviewed the Air Force procedures for
conversion cost estimation and found that there was no comprehensive
method for estimating such costs. The results of their review and
study was a document suggesting guidelines for the costing of
conversion efforts{Grim, Epler and Andrus, 1978].

The first element examined was the cost of converting

appiications programs which can be divided into analysis,

programming, manpower and machine costs. To calculate analysis

168

costs, one must first determine if there are patches. If so, one
must allow one man-day per 10 patch lines of code. Another analysis

cost element is that of sorts. If the target environment does not

produce sorted output identical to that of the source then allov a
maximum of two man-days of analysis per sort per program.

Site unique utilities must be converted if not replaced by
vendor software and if to be converted allow analysis time of between
two to five man-days for each utility. If the target computer does
not have equal or greater precision than the source, two man-days are
allowed for each program that performs arithmetic calculations.

After the analysis cost is determined, the programming cost in
man-days(M) must be calculated using the equation:

2*Ns*(l-%T)

M= ~——=em——
R_*(1+D)
where,
Ns = number of source lines to be converted
%T = percentage(expressed as a fraction) of LOC translated by a
automatic translator
RS = number of LOC converted per day by the average programmer.

This factor may be 1locally derived or one of the factors
provided in the study may be used. Examples of factors
provided are : COBOL to COBOL translations approximate 30
lines of old system per day while COBOL to FORTRAN ;

approximates 10.5 lines per day.

D = percentage that the old system is documented expressed as a

decimal. A value of 1.00 represents complete and up-to-date

169

o e e

Lf documentation. No documentation or comments in a progTam

means a value of 0.0 is appropriate.

After M above is computed, it may be increased up to 20% if the
programs in question are thought to be more complex than the average.
To determine the dollar programming manpower cost(CP), the
organization's dollar cost for one programmer man-day(PM) is
multiplied by M:

Co =M * Py

To determine machine costs(CM), several programs of average Ssize
are compiled and test run and an average cost per run(R) is
calculated. In a batch environment the average programmer makes two .
runs per day so

Cy=2*"M*R. f

In an online programming system, 3.5 runs per day is appropriate
sO: E

CM=3.5*M*R.

After examining application program conversion costs, data
conversion is analyzed. The basic cost factor in data conversion is
the cost of reading or writing a single average size physical record
of data which is the cost of a single computer input/output unit. }
This cost may be determined from the old system. This old system I/O

unit cost(Io) should be multiplied by the average number of physical

records per file(Fr) and then multiplied by the number of files(Nf).

To this amount one must add a similar computation for loading the

file to the new system using the new system I/0 unit cost(In). Add

170

to this new amount the cost of two programmer man-days(Z*PM) per
file.

The resulting data conversion cost(Cd) is then:

= %* % *E % * *
Cd (Io Fr Nf)+(In Fr Nf)+(2 PM Nf).
This is appropriate for sequential files. If the current files have

a more complex structure than strictly sequential, the In and Io

costs should be multiplied by some complexity factor. This factor 1

may be determined by comparing the cost of a sequential file dump and

a complex file dump of similarly sized files.

If the target environment is an upgrade in the same product line
and if a direct conversion utility is available, a new I/0 unit
cost(In) should be calculated and then:

Cd = (In*Fr*Nf)+(2*PM*Nf) ,

If test data needs to be generated, then analysis time of two to
five man-days per input file must be considered. The actual data

production should be estimated to occur at 50 to 100 records per day.

The next cost category is that of operating procedures

conversion. Associated costs are difficult to quantify; however,
some gquidelines are provided. If the JCL on the source and target
machines are similar and the differences are documented then one
should allow one programmer man-day for converting the JCL of eight
programs. If M is the number of programmer man-days required and Np
equals the number of programs then M = 1/8 * Np. If the JCL's are '

not similar then M = 1/3 * NP; that is, one programmer can convert

the JCL for three programs in one day. The dollar cost then is

Other cost categories which are mentioned but for which no

equations are provided are: support software conversion, facilities,

training, acquisition activities, and management and administration.

AFASPO Phase IV Estimation Method

The AFASPO suggested a modified version of the Hahn and Stone Model
for use in calculating an estimate of man-years required to translate
those portions of programs/systems that were not successfully
translated by the automatic translator[Air Force Automated Systems
Project Office, 1982a].

The documentation categories of excellent(0%), good(25%),
average(50%) and poor(75%) were used to adjust upwards the manpower
efforts to manually transition software. Since almost all of the
Phase IV effort is a COBOL to COBOL conversion, only the COBOL
productivity rates were provided: Recoding(29 LOC/man-day),
reprogramming(1i4.5 LOC/man-day) and testing(18.3/man-day). The
redesign rate was not provided since redesign is not allowed for
COBOL programs in Phase IV.

This first step is to calculate the total LOC to be manually

converted:
X =a-=-a*
where:
a = total LOC for a given software
b = translator effectiveness(90% in Phase IV)
X = LOC to be manually converted(I of MITRE model)

171

172

Then to calculate the total man-years to manually convert and

test a system the AFASPO suggests using x above and:

x/d+(x*c)/d+x/e
Y= * 1.1
20 * 12

where:

y = total man-years to manually convert the software

t c = factor for documentation condition(DF of MITRE)

1

d = productivity in LOC/man-day for manual conversion(RB)

C

e - productivity in LOC/man-day for testing(RBT)
20*12 = productive man-days per year

1.1 = factor to adjust for cost of documentation

Since tﬂg AFASPO's primary concern was to provide software cost
estimation guidelines, no other conversion costs were discussed. The
few cases of FORTRAN and Burroughs Assembly language systems which
are to be converted to COBOL are treated as new developments. The
AFASPO summarizes Wolverton's and Aron's methods and suggests that

the average of both methods be used as an estimate for these few

cases[Aron, 1969; Wolverton, 1974].
Wolberg's Model.
Wolberg analyzed a group of Rand Information Systems(RIS)

conversion projects and developed a cost estimation model which is

included in his recent book[Wolberg, 1983]. RIS has been

specializing in conversions since 1968 and has developed a variety of

conversion tools and aids which would cause the RIS effort and

- Y

173

duration data to be lower than if the same conversions were done by

relatively inexperienced personnel.

The RIS data consisted of nine completed conversion projects
ranging in project efforts from 59.1 to 343.8 person-months(assuming
173.2 person-hours per person-month) and ranging in project duration
from 7 to 32 months. Though various languages are represented, the
emphasis is on COBOL which is not surprising since, as Wolberg
states, more than 50% of the usage on mainframe computers is for
COBOL programs. A second set of RIS data includes duration -
information for 31 projects but no effort information.
There is considerable scatter in the data, so a straight line , |
was - chosen as the most reasonable model for representing the
functional relationships. A least squares solution for effort in '
person-months(E) is
E=7.14 * LO'47 4
vhere L = thousands of LOC to be converted.
The leas. squares solution for duration in months(D) is
D=4.1"* Lo'22 ?
where L is the same as above. '
Note that L, in the models, represents the total lines of code
to be converted. No mention is made of manual conversions. Since

these are RIS projects, one can assume that automatic translators and

other aids were used. However, the models call for the total LOC and

not only that portion of the total that is not converted successfully

by the automatic translator. It should also be mentioned that these

models are for the conversion category of recoding and that the
estimates derived include tasks associated with the entire conversion
project from planning to implementation.

Wolberg considered reprogramming and redesign as replacement
alternatives rather than conversion options. By his definition,
conversion implied that some degree of automation is possible thus
recoding is conversion. However, since redesign and reprogramming
are primarily manual operations, Wolberg <classified them as
replacement alternatives. These definitions or re-definitions impact
the development of estimation equations only in the sense that
Wolberg assumed that the redesign of a system requires an effort
comparable to the development of a new system of the same size. In
addition, Wolberg assumed that reprogramming requires an effort equal
to one-half the effort required for redesign.

Wolberg used the model for new development derived by Walston
and Felix to estimate the effort for a redesign project[Walston and
Felix, 1977]:

Egp = 5.2 % 19-91
Wolberg stated that the distinction between redesign and
reprogramming was not clear; however, it was clear that reprogramming
implied a smaller effort. He used his 50% assumption and applied
this to the redesign model to yield a reprogramming model:

Egp = 2.6 * 1.0-92

The effort ERD signifies the person-months required to redesign

a system of L thousands of LOC and ER signifies the person-months to

P
reprogram a system of L thousands of LOC.

174

Wolberg also made an assumption that the duration of a redesign
is the same as new system development and therefore used the Walston

and Felix duration model for redesign estimation:

0.36
= *
DRD 4.1 L

He also made an assumption that the duration for reprogramming is 80%
of the new system development or 80% of the duration for redesign.
Thus, the duration of reprogramming was defined as:

Dp = 3.3 * 10°%

Regarding the model for recoding presented initially, Wolberg
stated that since the smallest system in the RIS data base was 32,000

lines, the model might not be applicable to smaller conversion or

recoding projects.

ARPPENDIX B

DATA ENCODING AND PRELIMINARY ANALYSIS

Introduction

The general approach to the productivity analysis was a two step
process. First, the programmer resume and the program information
data were studied separately. This step 1is detailed in this
Appendix. Secondly, the separate data files were integrated, as
appropriate, for further detailed analysis. This expanded work is
discussed in Chapter 5. The preparatory work and preliminary
analysis presented in this Appendix includes encoding of data,
building of data records/files, and basic analysis of programmer

resume and program information data.

Data Encoding and Preparation

The goal of the encoding was to capture as much of the original raw
data as possible from the programmer resume form(Figure 1, Chapter4)
while keeping in mind the purpose of the data. To determine the
scheme for data encoding, the responses on 100 programmer resume
forms were reviewed and analyzed. Lists of responses for all the
questions were compiled and appropriate summary or explanatory codes
were devised to capture the raw information. The following comments

address the encoding of each specific data element.

176

The programmer code was originally intended to be three
characters with the first character representing the Major Air
Command(MAJCOM) or Separate Operating Agency(SOA) in the Phase IV
conversion. This one character code (hereinafter referred to as
MAJCOM), letter A through Z or number 5 to 9,'was originally assigned
by the AFASPO to each organization. The second and third characters
of the programmer code were toO represent the programmer(PGMID);
however, since one of the centers encoded their programmers with four
characters a total of five is reguired for the programmer code(l for
the MAJCOM and 4 for PGMID).

In the education section, the gquestion of aollege graduate and
degree produced a variety of responses. Table 17 presents the codes
and corresponding graduate/degree categories which were designed to
capture every conceivable inpnt. If more than one degree was
indicated, only the highest degree was encoded. Thus the

graduate/degree category required one numeric character.

Table 17. College Education Categories.

Q
4

Education/Degree

PhD

Post Master's
Master's

Post Bachelor's
Bachelor's

Post Associate's
Associate's
Some College
None

OHNWRERUTO J®

177

AD-A145 757 A METHODOLOGY FOR THE ANALYSIS OF PROGRAMMER
PRODUCTIVITY AND EFFORT ESTI..{U} AIR FORCE INST OF
TECH WRIGHT-PATTERSON AF8 OH J D FERNANDEZ MAY 84

UNCLASSIFIED AFIT/CI/NR-84-44D G 9/2

[X muz.a 2.5
“I"g S i
= E
TR
ll= " e

s s, yie

“4"“" T e -

MICROCOPY RESOLUTION TEST CHART
NAT.ONAC BUREAU OF STANDARDS - 1963 - &

178

The college major and minor guestions also produced various
responses. Table 18 shows the major/minor categories that were
thought to capture the significant fields of specialization. Both
majors and minors used the same scheme and were thus allocated one

numeric character each.

Table 18. Academic Majors and Minors.

Major/Minor

|8

Computer Science

Business DP/MIS

Math & Engineering

Physical & Biological Sciences
Management or Other Business
Social Science & Other

None

OHHNW#Ha= VO

The question on formal instruction produced the greatest and

most varied spectrum of responses. Since COBOL, COBOL-74, AFOLDS and

Sperry-Univac training were known to be of interest, they were

specifically broken out. A caution in this area is that an

individual which showed no or 1little formal training may have had
excellent academic courses paralleling the formal training. Table 19 A
shows the binary categorical variables chosen to represent an
individual's formal training. A code of 1 means that the individual
had formal training in that category.
The programmer resume form gquestions &, B, and C, under
"Background"”, requested quantitative responses of number of years,

thus encoding was unnecessary. Two numeric characters were allowed

Table 19. Formal Training Categories.

Areas of Formal Instruction Binary Variable
COBOL-74 FTNG6
COBOL(all except COBOL-74) FTNGS
Air Force AFOLDS FTNG4
Other Languages, DBMS and FTNG3

General Programmer Training
Sperry-Univac Training FTGN2
Software Engineering and other FTNG1

HW/SW Air Force or Vendor

Training

for each response. Question D attempted to qualify the experience
presented in the preceeding questions. The response to this question
basically indicates the respondent’'s programmer type. Table 20 shows

the categories of experience or programmer types possible.

Table 20. Programmer Experience Categories.

Programmer Experience Title

No Experience
Maintenance
(1f Development Exp. % is 0-33)
Both Maintenance and Development
(1f Development Exp. % is 34-67)
Development
(1f Development Exp. % is >67)

w N r—-o|§‘
o

The wording used in question E caused some confusion. The first
part of the guestion states: "If the majority of programs you shall
be transitioning are not COBOL, then what type of system are they i

Some responded "COBOL", others "N/A" and a few others another

180

language. The problem here was that an "N/A" response could mean
"COBOL" while in other cases it might mean the programmer does not
know. Table 21 indicates the program/system language type encoding
used. The four languages shown in the table are the only ones
possible in Phase IV, The second part of the question was allotted

two numeric characters to represent experience.

Table 21. Programming Language of Programs to Convert.

Source Language Code
COBOL(or N/R) 4
AFOLDS 3
FORTRAN 2
Assembler 1

Questions F and H were combined for the encoding since the
responses in question H overlapped and duplicated scme of those in
question F. Table 22 shows the categories of transition experience
that captured the responses provided for these two questions. The
early Phase IV experience category captures the responses that
indicate participation in an early Sperry-Univac operational test
evaluation as well as a programmer's opportunity to work at a center,
different from his own, where a Univac system was installed for
initial testing and/or conversion.

The question(G) on JCL experience was allowed two numeric
characters and no encoding. In some cases the JCL experience could
have been from an academic institution since the experience quantity
was greater than of questions A through C which reflect years of

field experience.

181

Table 22, Conversion Experience Categories.

Previous Conversion Experience Code
COBOL-68 to COBOL-74 Experience 5
(other than Code 4 below)
Early Phase IV Experience 4
Other Conversion Experience-Considerable 3
Other Conversion Experience--Some/Little 2
System/Equipment Knowledge & Experience 1
None 0

Except for the language used, none of the responses on the
program information form required encoding. The language code was
taken from Table 21. The Batch, Online and Difficulty categories

were all designated as binary variables. Both Batch and Online were

included because there are some systems that utilize both,

Data Entry/Data Records

The programmer resume data were first encoded and then keyed into an
IBM PC which was used for the basic data entry and initial data
editing process. Programmer resume data records(Table 23) were built
on a 320K diskette and the IBM PC line editor was used for data
corrections[IBM, 1981]. Printouts of the files were produced on an
EPSON MX-80FT attached to the PC. These raw listings were used for
desk checking the data. Once the files were cleaned, they were

transmitted to a main frame(Amdahl) where the Wylbur text editor was

used to collect the records.

Table 23. Programmer Resume Data Record.

Field Bytes Variable
Programmer Code
MAJCOM/SOA 1-1 MAJCOM
Programmer ID 2-5 PGMID
College Education 6-6 DEGREE
Major 7-7 MAJOR
Minor 8-8 MINOR
Formal Training
COBOL-74 9-9 FTNG6
Other COBOL 10-10 FTINGS
AFOLDS 1l1-11 FTNG4
Other Programmer Training 12-12 FTNG3
Sperry-Univac Training 13-13 FTNG2
Other Related Training 14-14 FTNGL
Total Years in Computer Field 15-16 TOTEXP
Total Programming Years 17-18 PGMEXP
COBOL-68 Years of Experience 19-20 C68EXP
COBOL-~74 Years of Experience 21-22 CT74EXP
Programmer Experience Type 23-23 PTYPE
Source Language of Programs 24-24 CONLAN
Experience with these Programs 25-26 SYSEXP
Conversion Experience 27-27 CONEXP
Years of JCL Experience 28-29 JCLEXP

The program information form content was modified slightly
during data entry. AFASPO personhnel commented on an early proposed
data record format stating that the DSD and System Title were
superfluous and unnecessary. The system code and program title(or
program code) are all that is required to uniquely identify a record.
In many cases there is even overlap here since the system code is
part of many program codes. Table 24 shows the program information
basic record. As was done with the programmer resume record, the
MAJCOM code is extracted from the programmer codes provided in the

activity matrix. The MAJCOM code becomes the leading character of

182

183

Table 24. Program Information Data Record.

Field Bytes Variable i
MAJCOM/SOA 1-1 MAJCOM
System Code 2-3 SYSCD
Program Title 4-9 PROID
Date Started 10-15 STDATE
Start Lines of Code 16-20 STLOC
Data Completed 21-26 FIDATE
Finish Lines of Code 27-31 FILOC
Type Information
Source Language of Program 32-32 LANG
Batch Type 33-33 BATCH
Online Type 34-34 ONLINE N
Difficulty
Sort 35-35 SORT
Zip 36-36 21p
Switches 37-37 SWITS
Comp Data 38-38 CDATA '
Call 39-39 KALL
Reeli's 40-40 REELNR
Random I1/0 41-41 RANDIO
Copy(libraries) 42-42 COPY
Interrogate 43-43 INTER
Number of Programmers Assigned 44-44 NRPGM
Activity Matrix
Programmer One ID 45-48 PA
Documentation 49-51 HRAl
Data File Transfer 52-54 HRA2
ADS Translation 55-57 HRA3
Create Control Language 58-60 HRA4
Test/Debug 61-63 HRAS
Miscellaneous 64-66 HRA6
Knowledge Code(Knowledge of 67-67 KCA

Program: O=not at all...
6=wrote program)
Programmer Two ID & ETC. 68-90 PB
HRB1-HRB6
KCB
Programmer ETC.
As many programmer sets as specified in NRPGM.

the record key and the programmer codes in the activity matrix are
reduced by one character. Notice that a variable is added before the
activity information to indicate the number of programmers that
worked on the program. The variable of number of programmers is used
in building the records of the program information file. The size of
the records is variable depending on the number of programmers
included. Since the 1length of the records may be greater than
Wylbur's 133 character maximum, TSO was used to receive the records

transmitted from the IBM PC.

Basic Summary of the Data Base

Because of its power, flexibility and ease of use, the Statistical
Analysis System(SAS), was used for the analysis of the data[SAS
Institute, 1982a; 1982b]. 1Included in this section is the first step
of the general approach of the analysis methodology. The programmer
resume and program information files were viewed and analyzed

separately.

Programmer Resume Data Analysis

The initial data submitted by the conversion centers was that of
programmer profiles or resumes. Over 320 programmers are involved in
the conversion effort. The exact number has varied slightly due to
personnel turnovers and new hires. The following information

describes the programmer resume file.,

184

w

The simplest description of the programmer file is that of
programmer type Or programmer experience type. Table 25 presents the

programmers as they see themselves and their experience.

Table 25. Types of Phase IV Programmers.

Experience Type Frequency Percent
No Experience 31 9.5
Maintenance 78 24.0
Both Maint. & Dev. 132 40.6
Development 84 25.8
325
-«

A description of the programmer's academic background is the
first part of the programmer resume form. Using the encoding
presented earlier, the degree information sorts into the categories
as shown in Table 26. Notice that there are no programmers

classified as having PhD or Post Master's education.

Table 26. College Education of Phase IV Programmers.

Education Frequency Percent
None 141 43.4
Some College 50 15.4
Associate's 34 10.5
Post Associate's 9 2.8
Bachelor's 72 22.2
Post Bachelor's 7 2.2
Master's 12 3.7

325

186

Computer science was the most frequently cited major field of
academic specialization. Table 27 shows the majors and minors as
summarized in the categories chosen during encoding. Since the
academic major is the best indication of a person's background, only

the major was used in the analysis.

Table 27. Summary of Majors of Phase IV Programmers.

Majors/Minors Frequency Percent
Computer Science 49 15.1 -
Business DP/MIS 27 8.3
Math/Engineering 17 5.2 1
Physical Biological Science 5 1.5
Management & Other Business 24 7.4 ,
Social Science and Other 28 8.6
None - 175 53.8

325

The formal training or instruction section of the programmer
resume form permitted the greatest latitude of responses. The
encoding of the responses produced the classification of training as

shown in Table 28.

Table 28. Formal Training Profile of Phase IV Programmers.

Formal Instruction Area Frequency

COBOL-74 16

All Other COBOL Training 162

AFOLDS 49

Other Programmer Training 239 ,
Sperry-Univac Training 283 ?
Other AF/Vendor ADP Training 167 |

Of special interest in this endeavor is the conversion
experience of programmers. Table 29 presents the conversion or
transition experience as given by the programmer in response to
questions F and H of the programmer resume. Notice that some

considered their knowledge of the system as conversion experience.

Table 29. Conversion Experience of Phase IV Programmers.

Conversion Experience Type Frequency Percent
COBOL-68 to COBOL~74 Experience 5 1.5
Early Phase IV Experience 48 14.8
Other Conversion Experience-Considerable 13 4.0
Other Conversion Experience-Some/Little 55 16.9
System/Equipment Knowledge & Experience 8 2.5
No Experience 196 60.3
325

For nominal or categorical type variables such as those
presented above, the most commonly used analysis technique is that of
the Chi-Square test of independence which is typically accomplished
by means of two-way tables[Roscoe, 1975]. This test was accomplished
on all wvariable pairs of interest. As mentioned earlier, the
academic minor and responses to question E (system or conversion
language and associated experience) were excluded from this analysis.
The results of the Chi-Square tests revealed that the categorical
variables were defined with too many levels. Almost all of the tests
were invalid because the matrix or two-way tables were very sparse or
over 20% of the cell counts were less than five. After reviewing the

literature and studying the percentages of various categorical

187

levels, some recombination of categories or levels was thought to be

appropriate. Table 30 shows how the college education(DEGREE),
major (MAJOR) and conversion experience(CONEXP) categories were
regrouped for analysis purposes. These new categories also appeared
to be more meaningful.

The newly regrouped categorical variables were subjected to the
Chi Square test. Table 31 summarizes the tests of the null
hypothesis (Ho) that the variable pairs are independent. The level
of significance or probability of Type I error (rejection of a true
hypothesis) chosen for these tests was .10. Notice that t* correct
terminology when probability of a Type I error is greater an .10 is
that one "can not reject Ho". This is true because t! ‘hi-Square
test does not prove independence but only allows one to _sume that
independence is probable. The SAS tests also provide measures of
association between the variables.

The quantitative variables of years of experience were analyzed
by means of factor analysis. Rushinek and Rushinek regard factor
analysis as a process of identifying variables which are highly
correlated and somewhat redundant and suggesting new independent
variables or factors to replace the original ones[Rushinek and
Rushinek, 1983]. Table 32 shows the partial correlation matrix and
terminal factors which result from the SAS Factor Analysis. Notice
the high measures of correlation and that the six variables are
reduced to two factors. The results indicate that the information

content of the six variables may possibly be provided by two

189

Table 30. Regrouping College Education, Major and Conversion
Categories.

New Education Types Frequency Percent Previous Categories

None 141 43.4 None

Some College 93 28.6 Some College

Associate’s
Post Associate's

Graduate 91 28.0 Bachelor's and
_— Higher
325
New Major Types
Computer Science 49 15.1 Computer Science
DP-MIS/Math/Science 49 15.1 Business DP/MIS
Phy/Bio Sciences
Math/Engineering
Other 52 16.0 Social Science
Management and Other]
None 175 53.8 None
325
New Conversion Exp. Types
No Experience 204 62.8 No Experience
System/Equip. Know.
Some Experience 55 16.9 Other Exp-Some/Lit.
Greater Experience 18 5.5 Other Exp-Consid.
COBOL 68 to 74 Exp
Early Phase 1V Experience 48 14.8 Early Phase IV Exp
325

190

Table 31. Summary of Chi-Square Tests.

Null Hypothesis(Ho) for test: Variables are Independent.
Alpha Level Used was 0.10.

Variables Tested Results of Test Prob Type I Error Association

MAJOR & DEGREE Reject Ho 0.0001 0.668
MAJOR & PTYPE Can Not Reject Ho 0.5072 0.158
DEGREE & PTYPE Can Not Reject Ho 0.3860 0.138
DEGREE & CONEXP Can Not Reject HO 0.1473 0.169
MAJOR & CONEXP Can Not Reject Ho 0.3603 0.172
CONEXP & PTYPE Reject Ho* 0.0001 0.327
MAJOR & FTNG6 Reject Ho* 0.0314 0.163
DEGREE & FTNG4 Reject Ho 0.0480 0.135
DEGREE & FTNG1l Reject Ho 0.0536 0.133
PTYPE & FING5S Reject Ho 0.0023 0.207
PTYPE & FTNG1 Reject Ho 0.0262 0.166
CONEXP & FTNG5 Reject Ho 0.0519 0.152
CONEXP & FTNG2 Reject Ho 0.0208 0.171
CONEXP & FTNG1 Reject Ho 0.0325 0.162

All paired tests not shown resulted in No Rejection.
Most Training(FTNG vs FTNG) tests resulted in Rejection.
* Table is so sparse that Chi-Square test may not be valid.

191

Table 32. Partial Correlation Matrix and Factor Analysis.

Correlation Matrix

TOTEXP PGMEXP C68EXP C74EXP JCLEXP
TOTEXP 1.00000 0.76981 0.69660 -0.00316 0.21817

PGMEXP 1.00000 0.88327 0.09837 0.24922
C6BEXP 1.00000 -0.06478 0.22330
C74EXP 1.00000 0.20803
JCLEXP 1.00000

Factor Analysis Pattern

FACTOR1 FACTOR2
TOTEXP 0.87365 -0.11573
PGMEXP 0.95173 -0.03793
C68EXP 0.91842 -0.17792
C74EXP 0.06721 0.85014
JCLEXP 0.38792 0.62766

variables or factors. The first factor primarily contains the
variables of programmer experience (PGMEXP), total years of
experience in the computer field (TOTEXP) and years of COBOL-68
experience (C68EXP). The second factor is mostly a composite of
years of COBOL-74 experience (C74EXP) and years of JCL experience
(JCLEXP).

Finally, Table 33 presents a summary of the programmers by
experience levels. Also shown in the table are averages for all the

years of experience in each area.

Program Information Data Analysis

When a Phase IV organization completes the conversion and testing of

a program, a corresponding program information form is submitted to

Table 33. Phase IV Programmers Experience Summary.

Experience Level of PGMEXP Frequency Percent

Trainee 93 28.6
(1 or less years exp.)

Intermediate 78 24.0
(2 to 3 years exp.)

Experienced 54 16.6
(4 to 6 years exp.)

Senior 100 30.8

(7 or more years exp.)

Average Years of Experience In All Areas

Total Field Experience(TOTEXP): 9.68
Programming Experience(PGMEXP) : 5.93
COBOL 68 Experience(C68EXP): 4.19
COBOL 74 Experience(C74EXP): 0.44
JCL Experience(JCLEXP): 1.59

the AFASPO. One of the centers, the Air Force Data Systems Design
Center (AFDSDC), has been authorized to report their conversion
progress by using an alternate method. The AFDSDC typically reports
every two weeks with general progress information and periodically
provides a man-hour report by system, not by program, without
detailing the programmers involved. These system 1level man-hour
counts were used during the cost estimation analysis presented in
Chapter 6.

The data collection for the programmer productivity analysis was
stopped when a sample of 130 programs was accumulated. A
presentation format similar to that for programmer resume records is

used to provide the essential facts.

m—f |
193
The first basic summary is that of the number of programs by

type and number of programmers assigned. Table 34 shows that the

sample includes only COBOL programs and only two programs had online

requirements.

Table 34. Phase IV Programs By Type and Number of Programmers.

Number of Number of Type
Programmer s Programs Batch Online
1 51 49 2
2 24 24 -
3 22 22
4 20 20
5 7 7
6 3 3
7 3 3
130 128 2

*All Programs are COBQOL-68 Programs

In order to have a supplementary difficulty measure, a count of
the number of difficulty categories checked was calculated. Table 35
presents the difficulty profile of the programs. The first part of
the table summarizes the counts of each of the difficulty categories
as individually checked by a programmer. The second part shows the
number of programs for each total count of difficulties checked per
program.

Table 36 summarizes the average number of hours spent on each of
the six conversion activities stipulated on the program informatiocn

form activity matrix. The table also shows the average percentages

of effort expended for each activity. It was discovered that most of

194

Table 35. Program Difficulty Counts & Totals.

Difficulty Count Difficulty Count
SORT 80 SWITCHES 55
1P S0 COMP DATA 49
COPY 26 INTERROGATE 21
RANDOM I/0 24 REEL #'S 20
KALL 13

Total Difficulty
Checks Per Program Number of Programs Percent

0 20 15.4
1 37 28.5
2 15 11.5
3 16 12.3
4 13 10.0
5 8 6.1
6 17 13.1
7 3 2.3
8 1 0.8

Table 36. Conversion Activities: Times & Percentages.

Activity Avg Time Percent
Documentation 2.93 4.6
Data File Transfer 3.76 5.8
ADS Translation 14.85 23.1
Create Control Language 5.33 8.3
Test/Debug 28.41 44.2
Miscellaneous 9.06 14.1
64.34

the data reported contained no count of man-hours for the first two
activities or categories: documentation and data file transfer. The

reason for this was that these two activities were typically handled

at a system level and the accumulated man-hours were either not
reported at all or recorded on the activity matrix of one program in
the system. The impact of this reporting discrepancy was significant
only in that the total effort hours for productivity analysis were
derived from summing only four of the six categories of the activity
matrix. This increased the overall uniformity of the data for the
study. A collection of productivity and other measures which shows
the overall condition and content of the information file is provided

in Table 37.

Table 37. Productivity and Other Summary Measures.

Average Measures Mean Min Max

Lines of Code Per Hour (LOCPERHR): 44.4 3.53 396.8
Hours Per Hundred Lines of Code(HRPERHLO): 6.0 0.25 28.3
Total Hours Per Program(excluding documen-

tation and data file transfer): 57.7 2.30 368.0
Starting Lines of Code(STLOC): 1175 121 4650
Finishing Lines of Code(FILOC): 1260 149 4849

To allow another view of the data, a file subset was created
which contained those programs assigned to only one programmer.
Using this file subset, a SAS generated cubic graph of the
relationship between lines of code per hour (LOCPERHR) and the
programmer's knowledge of the program (KCA) was produced and is shown
in FPigure 5. Notice that productivity decreases as the programmer's
knowledge of the program increases. This counter-intuitive behavior

of the Phase IV data supports a statement by Oliver that programmers

195

converting their own programs may not resist the temptation to
"improve" the programs they are converting[Oliver, 1978]. No
conclusions may be drawn about other conversion environments and this
phenomenon may change as the Phase IV conversion effort continues.
This manifestation is discussed further in chapter 5.

The variable LOCPERHR was similarly plotted against the count of
difficulty(SUMDIF) using SAS and the.results are shown in Figure 6.
As expected, productivity generally decreases with an increase in the
difficulty of the program. The initial dip or downward slope at
SUMDIF=0 indicates that there are some complexity items not included
on the Phase IV program information form for the programmers to
check or some programmers failed to properly identify the difficulty
cateqories for their programs. Discounting the initial dip of the
curve, the decreasing productivity as the the program difficulty

increases is likely to be true of all conversion efforts.

LOCPERHR
420

-

380

380

aalassaadaoiay

N P
>

330

300

aaad,ian

270 >

240 -

aalaa,

210

e

”»

180

P

150

adaa,

120

[0

60

30

w4 »r» 1’ >y

KCR

Figure 5. LOCPERHR versus Kaowledge(KCA) of programmer
programmer type progranms.

for

single

300

270

240

210

180

180

120

S0

60

30

o

198

Figure 6.
programmer type programs.

2.8 3.0 3.5
SUMDIF

LOCPERHR versus Program Difficulty(SUMDIF)

for single

APPENDIX C
PROGRAMMER RESUME FILE

This appendix contains the programmer resume file in its
entirety. For a description of the variables refer to Appendix B.

The SAS listing of the programmer resume records follows.

199

PROGRAMMMER RESUME FILE

VOoLJwxa

COoTwxa

VI>vuwxaa

Vo242

[- N - ST

Or~ewxa

GYBWxa

LO0XTwxa

0k wxa

Q-

=20~

w=-ZOoMm

“-—ZO0w

wi=ZOn

w=ZJWw

I=-2Z0x

T«O0x

Qwdxww

[SR S N-]

X«<D200X

cCaow

MO NTO ==t 0~ 0 ~NOMN =T~ N~ NN O TNNON
THTOOO-OONDITOOONTONNNDOOOOOM=NQOQTO0OM
[SReNoR-RoReNo NoNojoNe oo o RN NoNe N NoNo o Ro oo Ry o N NoNoNo o No N No No No)
LA R A A RAAEESASASAEEEEE R R ERE EE R REREREREERTREE RRR]
TN EME e r N rN"TONN"TNNNINNTN MM OO N NN
== 000000~0 =0 00QOO0~0MON—~-000COMO0OC~000

PUST NN TN "0 T O TTANNRALTRIOOANOR =P OM =m0
- - - -

TR NNNNNDN =T~ 0N VTN ""NANOINO =PI =TT ®
- - - o~ - -

CTOCE " TNTONN TN NOOWLTYONNR= MmN
- - === &N NN~ - =-a

1
]
1
o
1

hadhatl ol ol ol ol ol ol e ol I B ol ol ol o B I ol ol R b I K R I e I
OO0 = rrrmrrw e rr e m O rrr e rrm e rew-—-~-
QOO0 QOO0CQO=0000O00=0 000000~ Q0 =0 ~0~0000
oo--ooo-oo-oooooo-*-;o———---—o-———-~-
SRR RoNoR-Rol R Ro N Ro Ro R o NoR oo NoNoNoNoRoRoRoR o NoNoNo R NoNoN-Ro N Nol
CNOOQOOO0Q0OO0OINOO0O0C0O000QQCO0ON0O00QO =0T ~=00
QUOVWOCOOV~0Q00UNOTVOOOCOONUVOLQIYN~T~NDO
QT =000 "N -NO0ON-MMMOOQO0O~0TYWOOQ~TTNOTTO~
«VLUVLEDVVOWLITI=VXYIJIEIZICAUVAWULI=DVXY JIZ200a 0«
QOO0 COCCCQAQAQACCO W W W Wiy bW

ETNOMTNOF AN =ANNTVNYOEDAO =N TNYDNQ
——e P e oem e NOVNANNNNNNNND

200

VO LwWwxa

QOZwxa

V™ xQ

OCOZ a2

Q> w

OneTwxa

VCODdwWXxXa

COXwxa

_-0 e wXxXa

Wi=ZJ -

wreZI~

w=-Zo®

PROGRAMMMER RESUME FILE

w—-Z20w

we—Zon

weZoe

I~Z0cx

& S-R-N- 4

k' OwUOxww
[~ -1

X«vY0oX

ONTOCOO0OONOQOOCOONOONOO~O =T 0000 NMINOMN®~

CNOOONANOOOTOOOOOONOQOMOOMNOONNTOONTOQ

OO00QCOTOO00QO0O00O0000VO0OOOOOMOO0O0000O0e

TP TCITTTITTCTTY

ANNNANANNNNNN=NOM

Q00000000 QCOo0O0O0O0oOw

16
14
2

19
19
4

2
18

17
18

i
-

<@
-

-y

NN M -

- ~000Q0=0=~=w=

OMm=~—m
-

13

[oN N,]

14
5

6
6
20
19

LR R I R R R R

O000CO=~00 0= Q0O ~r=-

Ll Rl * R el R

MY TP TTTICTMNITTCITTITTTTD

NNNONNOOTANNQONNN=QNNMN

CCO00OO00CWOOOOONOOOO0OQ

No-gom:gooomv—ou_vmoo -

13

NMT-A0MOMONOTNOU OV ®™
N NN N R

bl =R _NeNol R R NoNoR X R R X X Nel¥o]

00~ 0-00000Q0O0LO0OC0

Q000" ===Q000+~"0Q00~~00

OC00CO0C0O0000QQO00O00O00000COOO00000DR00S

MOCO0O00O0000QTNOOOOOOQOO00O0MNO~QANNNONO Y

~000000UYWMOO0~VOoNOO0QO~QO0CAT~0NONLVON TN

200 ~C00NTOOTNOO0TOO0OQTO=--~0vwP0elOwerdere i

WhwIddOQWLUUImIYXJE2Z2000QCN IO X>NCAOOOWWOTIm

LRMLOOOUUUOUUUUCUUUUJUUOUUUUIUOYUYYWIITIITII

~ M
~r~

H
H

74

PROGRAMMMER RESUME FILE

VO dJwxa

VCOoOZwxa

VN >nwXxa

VOZ2 42

Q= >a w

O~ wxa

COowxa

QaUZTwxa

0w xa

-9 -

w—2ZON

-2 Om

w20

wieZaown

“w=-Zow

I=20x

T«OOx

QW ww

LCI~Q

T«L«B00X

Saowv

TONN="OVNONNTON===-NO00~M==00000~=-0

CQOONNQONQOMNONNO~QQCOTTOONOQOQO~-000
[=X~R=NoNeNoNoRoRe NoleReNo B JoRoNoRaloNeoNeNoNoNoNoNoNoNoNo NoNo Nole}
LA A A RA AR REEEEEEREEEEEREREEERLEERRE R N ¥
e OMNOIONMIOIOIMN =N =N =000 nNmaN
~O000O0ONQOOQOQOO0QORO~ 0O ~0 =0 ====0000=0~

ﬁ""ﬁe‘foomoomﬂcm:ﬂﬂﬂ:ﬂ"O’OO"OOO?”’N

TmmOOMO=NONOQO"NOINNO™>eMee =000 TMmM~M
- e - -NN -
TN PATOONOQOTNAINTYONTON MM~ =000TOI~M
- - ~ N e,oo -- -

e, e, e, -0~ 00 "0~ 0000000000C =0~
e, 0" =" 00000 r rrrrrr rr e, ———-
~Om e mr e e 0" =00~ ~0-00 "0 "m==-00~~
0000000000000 000=-0000C0000000080
0000-=0000~0000-=00000000000000=0
0000000000000 ~=-0~000000~=000~00~
WOOOOVOoOON=-00WO00MNNONDOOOC00000OINOO

MOMOO=WOUYWOVONOQORWWONNQOOQOCQOOWWeOo

QOO0 w™

OQCcoCOo

T T

NN O™

Q00O

-0 -

QOo~0

- - =

Qo0 -0

©O=0O0

ONC O

TONQOTUWOTMNOLOOOT~0TTIOO~Q0QO00 "t ==0F ==

«DRDVO K w I =] QLS
x-lzzon.oa:mr—:>acao:gg:g§:z§:§§zmmmm
IIXIZIIZTIZIIIIIVNCNOIVDIVIVDIVNIDINDDIDITDIDDD

U’@NQQO-Nﬂvm@hﬂmg-NﬂQﬂ@hﬁms-ﬂﬂvmgh
EERArIONOVIDIDDNNNANINNNINFQ0QQ0QQ

SG

W e
v

i Bl 4

110

D
ee

PROGRAMMMER RESUME FILE

VO wxa

VO 2 wxo

V> wxa

VOZ2 4«2

O Twxa

Voo wxao

AO0OIwxa

-0 wxa

w2 G

W2 QN

i ZOM

wZO0e

Wi ZOW

wh-2ZOWw

I=-Z0x

Z«O0Ox

QwWOoxww

LO0OX=-0Q

TI«OVOX

oawv

Q- ==~ M-00000000~0MAON =T mme-=-=n00~0~0~

NOOQONTLTOTMOOLTAONCCOTOUITIOONTIONCONON

COQ0QO0OCMOCUVOCLOQOOCOLOTOOMOOO0O~00~-000C0

T T T T T T M T TMONT I TN I T TTIONTITMNMITITTTTITITMNMCTTC
OO =OM=OONNTNOIOONNNOM = NONONNNN=MIDINNNDM

[eleNoRo s NN ool ofo o oo JoRe ReRoNo o RoNeRollv o NoRo No N Ny e No e NoNo RoRel

YO QOUNDB TR NYDTO=NONOOODDONONNMDrr INO T
-- - e e - - =Y - - - - -

QU =N "~ ONCTITO NN TDANTOOUNON~MINT T
& - - . e - - N e - - - - -
TETOVOWAN" NN NDOOONLRNTONNOINNOONNMNMO~YaTS
N NN - - NN N o~N - NN - -~ N - - -

~r =00 """ =" 0 - 000 ~0 " " r -, == =0=00 = =0
e, r e r - 0000000 TO00 .- -
bl -T-E R R - Rl R R - R N R N R
000000000000 C00~0Q000=0==00~A00~-00-0~
O O e, r e e e e e 0= =00 ", =~ r00000=00
000000000000 00000V00000000000000C00O0
00000~ 0NNOMOOOC00CR00000000000000ONO =0

COO0Q0QOTUYWNVWOTOOOOONOQOTOLQOOCOLQQROoVWNO -0

,mml0NNTYOTOO~=0N000TOO0OQOO~~0CTNOTQ

C=nmmw

- -

2QQ00QCCQ

DO WLICDVAWLIOI =DV JZCEP0OOWULIOI ~VXYXCEDNLCCCCqCACA

XXX YY d Dt d dd JJLETIXITXTTIITIIIIXIIZ2Z2COOOCLD

NOAPNOFCDNO-NMPTHNYRDIPO-NMNTNYOSINO~NOTNOND
mEm et wm e, NANNANNNNNNNOOOSOOONOINMNTTITTIILITITT
- e e et e e e e Y Y R YR e ek e e - em e R W e e e W Y e e e o e

204

VO Lwxa C=O0NQOOO~ 0= e ~0NOMYTOINANTO==M000~0NTO~00

COZWXAE TANOMOOO020NTLONTOMONTANNONNMOOCONOCTOOO .

N>nwxa 0Q00Q0~0O~0000Q0Q00~QQ0OQQQOC@O0O00OO0O~0000

OCOo24x2 T T TN T M TN I Y I T TP I I I ITIMNTIIICTITITTTS
Q=0 w MOONNI"ANONTITNNNTNNNNNMNMNANNNM =M ONN==NNN

Orewxa OQ=0NOOOQOQQOUVWOOQC~ 0= Q= 0MO00Q00Q00O0~~00~~00

3
1
9
L]
S
1
o]
3
3

QOB WXE MOONTQO=TO~MMMNMAN"QNMIOONONAIMO
- = - - -

LCZTwWwXa MOQCE-TNMO~TVOOMM
- - ~

1
2
1
18
2
3
3
14
4
12
5
20
20
3
3
16
2
9
4
5
'
1
3
3

-0 xa MOVWrNNNET~TONOM DOPVANMITN=-~-0DO
- - ~ - -

]
3
16
23
4
3
14
14
S
17
15
29
at

e ZO0s 000+-000000*" """ Q=" ="=="000000=-000~0C000~
U b Z (N = o o o v e v P e e W T e P YR e e Ym e T m Y e Ve W e e R e W e e e e
W ZUM OO v rmwrmemrwrmrwenmererrer00 00000 "0 "= ---

L-ZUe 0000 QCO0Q0~=00000000000ROO~0~000O0QOO0000

PROGRAMMMER RESUME FILE

-2 Oown OOO“OOO’T"OOO*OO‘OOO’O——O—O'OOOO-“'
w200 ooooo-ooooooooooo—ooooooooooooodooooo
I=ZOo0x OQ0O0=NNOQO00UVWTOOOOCNNOANTO~000COOO~"NNOQwOO
T«CIAX Q00U =~Q00UVOTYWOVLOOONVNOVMUBITIBOOMOOTYVWYWOO~On

QuWUawwW ~00TNQ=~N="=0=Q000UNm=~eaeNMMNQOOTO00~TN0O0T0w

AQ1S
AQ16
AQ2
AQ3
AQ4
AQS
AQ6
AQ7
AQ8B
AQ9
AX 1
AX2
BKS
Bv1
8v2
c89
[1:3)
EB2
EBI
GX 1
HG1
HG2
HGJ
HG4
HGS
JEI
INt
IN2
IN2
Lyt
Lv2
“e
MB2
MB83
SF 1
wu 1
Yo

aCXI~0

TXVC0CIT 000QOCOCQO0OCOCO0000000000QO0O00ECCARROC i

149
150
151
182
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
t8s

c@wn

PROGRAMMMER RESUME FILE

VDO - wxa

COZwx>xa

Vi>uwxa

VOoOZ A2

Q>0 w

Qe wxa

QWYDwxa

A O0OIXTwxa

—0=wxa

1

w20

wh-2ZOo

w—-20m

w20

w2 OWm

=230

I~ZTO0x

I«Wox

OwoOww

CJZXT~Q

T«V20QX

cawn

TO0O0~ QO =0~~~ 0NO=QO0NONNON~COANNMO»>NMMON =~ =
TOOOO0OTOOCOONONDOQO==00MOO0CONNOO~OTNQOQ
00000000000V 00000000D0O00COR0DD000000
vvvvvv.vvvvvvvvvvvvvvvvvvnvvevvvvvvvvv
T OTOMMO T " O =AM "N =IO N =N IN~ =M ==mO0
TO00000~"00~0TO000000O000000000~C0NO~0 OO

ﬂNoOOO‘OOO'HQNoﬂnnNo—mopgwon'——vvw—oo
nﬂnwovvo——Ohm«wn«nwo—g—nﬂwo-—n—vvonoo
- - = -

TANOVOTTO="=O0ORUNNAINVNOVLO~INNOTOMOMOIDTNTON
-~ - &N N8O -

CO0DO0O00~-000000000 === =0 >0 Qe rr=e=00~0+v==0
dalali ol ool ol S b - R N R R R - X - R R R Rl =
halhalhadi =R el >R ol ok s Al Rl ol e Rl B o - R R R N RN - R)
aooooooooooooooo;oooo—oo-oéoooooooooo
OO~ 0=000"==0 =0+ Q0 ==+0=0Q0==>=00000~=~0
0000000000000 000O0OQCO0O0O00O000000000
WOQ0O0TO00QCO0QO0 =000 TOUMONONDOVOONSWOTOOOO™MO
TONOVOVVWOVONOVONOYWT~0WO~0 =0 TNONVLVLONON TN

NOVWOTN-ONNTTIO~O0TRTIONCMOTOTNNT =~ 0NO =~

N’-eﬂﬂ?m@h@m
CeVI0ITIIOVIOS
PNONNNNNNNNNNCDCQOOWRLOI=mIOIY 42000V =23D>3

SR=N- N~ RN~ K- N-N-N-N-N-N -S4 X - X N- N N-N-J-N-¥-J. ¥~ N-N. ¥ X N- ¥- N. ¥ N-]

whomg-«nvmwhomg-unvmwhomo-«nvmwhomo-u
VBDDANNPNNNNNNNOOOQCO000Q000 P mr == NN
e e mCEC T E e T r, e r NN NNNNNNNNNNNNNNNNNNNNN

205

PROGRAMMMER RESUME FILE

VO Jwxa

CoZwxa

VI>nwxa

CUZ J«2

QM wwxa

LUV WXLL

AUXTwxa

-0 wxa

=T~

o= D

w—-ZOo®m

w—-ZOow

w=ZOow

w=-ZJ9

I=ZOx

T«cVO0x

QWU ww

AaCIXI =0

I«S00%

[-N-- N

MOENMOQN~0MOMOOTO
TNLTMOQOTNONMOTOOND
OCCO0000OCQOQO00O0Q0O0
TeTTTTTTTTTITITSCTT
ONNN= "N~ N=~O =IO
NONMOQO*=O0~Q0O000 =~

Ngwmomvnonv~oun0

TVOBNOWRVOYWT~ONT™
- -

VHNOVWITVNACMOMNYTONDN
- -

0" Q0Qw==00Q0~-00~~0
Ll R I e I R I I R R o o
e, Qe 0QO0 - —Q
Q000000000 ~-00000
e reese-Q0~00
QOO0 00QOCO00C0O00C000
NOW=-O0Q0O000QO0OO~0C
PON-O0O0UWOOWVWOO~=-0w®
TNWLO~NOQONQOTTANN
ADOOWLOTIT=TIXJIZAGN

xS

NeNYrRBNO NN~ ®
NN MO
NN NN NN NN

V=0T =0~0NQQOOOOQOQO~~CO
TTQO0Q0O0OTOQOTONQCOOOTOOO
[=X+ReRejojoNoRoNoRoNo o e oo NoRoNoRoNo N0l
TYICTTCTTTTITTIICISTITIT TN
TNNNTNN" QN "N ONNTNN -
COCO~CO000O~"0000QOQO0CO0

Nt ONQOTT— -
-

NMemrtMemreQeredN=~O M=~
o~ &

DTN CTTITONP T O= =T =N
N M-

-, O0=0="0=000~0 =0 ===0=0
Ll - R R R R R - Rl N R
", e =000 -0~
~000000000000000QO000
000 =+=0===0000=00=-000
000000000~ 00000O0O000
Qe 0000000000000 00C000w
VO=0000C00000~N-000CVW
TNT=QOQO0==00000NMTOOOO -
AMOAWWOIVXLIZITZONCSODOO W

NNV BVNVTN NN = = = -

O NITONOCDAO =N TNONDD
MYTITITTETITITNOANONDLDONDN
NN NN NN NN NN NN NN NNNNN

206

PROGRAMMMER RESUME FILE

VO Jwxa

QO ZTwxa
N>uwxa

COoOZT I«

(SR B0 &-9

CWwowxa

A0Xwxa

—-0 = WX Q

u‘.o-zw-
w20
w=-ZO0Mm
w20
w200
we200
I=20x
t & Se-N-X. 4
QWOXxwWW
aQIT~a

I«200X

Q= 00000Mm O~ 0 Q0QUWO ="M= QO =0 =0 ==0===00N0MmO
0TO00O00TOOOOOTOTTONQOOOOOCOTTNMOwWOOOO0TY
Q0000000 QOVO00QOMOCOOO0O00O0OOO0OOQOO0OC0
I EEZEEEEEEEREEREAEEEEE A AR AR R RS EEE R RN XX]
Q" O~ N =N NOONNNTIMNANMCOMONN-AMO =M =N~

O"OOOOO-QOOOOO?_OOO*O--OOOOOONOOOOO-OO
OO0 =PMaNM==00QNNNMT~0000MNNT-0~N00~0nNM
o—o-—nuuv——oog_uz‘l'_’ﬂﬂgoo——onﬂ\gv::—uug-ovn
vnn--na«vn-—«gg:ongco«-ogggg:guusg—ogn

~=~000000000~=~=00=0000Q0=0=0======Q00=0
b bbb R R R R R R R D - R R - R R
-————--o-—o—o——oo;-o-—--oo—o-—-——-—o-
0000000000000 --0000000000~0~000-0~00~
000000000000 ~~=0000000 "= rmmmw=r=0==0=0
000000~ 000C000000000000000000000C000C0
0voooo§~ooo~ooooo«oo«oéwoowo«—oooo«oo
CBCO00NOPOOONOOCOONOOM=0WOONOT=000N=10
ONOCOONO~000WO0000TOONNOMOOMONNOOO=TND

LOIT=TOYXJIZ20AQAVNIFIDEX>N"NCOUQWLOI DOV W

N N e e A A - B - B I - B

o-«nvmwhnmooﬂnvmwhucﬂo—navmwhamg-nnemw
YPYWPWOQUVOOPOSRSSNENERNCEIRIRIRDIRIRNDIANINOINN
NONNNNNNNNNNNNNNNVNNNNNNNNNNNNNNNNTNNNN

207

PROGRAMMMER RESUME FILE

VOoLwxa

VO ZTwxa

N>nwxa

COZT 42

Q=>a W

Or~TiwWwxo

QCO®@wxAa

AO0Xwxa

-0 wXxa

b T -

w2 ON

w20 m

=T Ow

[LA

wh2Zow

I~=Z0x

XT«OOox

QWO ww

AQCX=-0

T«D20CX

[-N-- X

OVO‘NVVHONO"OG:Q’QOOOOQﬁ’”Om

QOO0COCTONOOOONNNODNNQOQOETYNOOWOO
0000000000000 0V0O~000QOOONOOQOO -
[EEXEZ AR R ERER R R AR AR R AR AR R KB X/
MmN NONNONNNNONNTNNNNN ===
O~ 00"QO0= Q0 =000 UWMO~00®BWOOO~0OQOOO0O0

—ovﬂo-non—OvunNnoo:o~ﬂN9'v—°9

"D "NOOIN=QANAINMN DRI NQOQET T ==
- -~ ~ - - -

TR DTTNTONT=0O0ONNOND NN
- o™ NN = -

36

oomMWwoTTNNY
0000000 ~=0000"0 " rrrmr==0Q0O0~
O " Q- mrrm QO === 00~ ~00
—memeswwmmmamm Qe Qe e -
CO0O00O0=0000~=000000Q00O000000QO00O0
QOO > =0 = »==0000"0"~0=QO0===00Q0Q0O
[oXoNeRoNo R NoNeNeNoNoloNoloNoRoleNoRoleoReNooNeNoRaleNo kol
O 00~ T0T000MOO0TYTOTYTM=vO00000O0ON
ONOQ~YWOM™=TYWITOONW=P==NNQUNOOOWV
QO =020 T~ 0QLeMTYVITTTT~NTQOO"
UL =mOXYJdT20004CDCNUCCCRVCDIBIIITTC

PRI ENNONOONONNRITNRINDIOND

5828530388588 2-00 225225838
NN ONM el] [y M x] L e B e B B e T e B B B o B B B

208

209

APPENDIX D

PROGRAM INFORMATION FILE

This appendix contains the program information file in its
entirety. Appendix B contains a description of the variables. The

SAS listing of the program information records follows.

PROGRAM INFORMATION FILE

X0«
Tx«<eo

Tx<w

T«
ITx<xm
ITxan

ITx«x~-

o <
200X
-2

voa>
X< ZQ~0
WS ZTX
X«
VO C~«
NP =N
N o

NS X~
OZ 4= Tw
[8 N B
—SZCS
--JdOu

Q-

A= O

LA - 8 2"

AXQO=Q

n>wnowa
X200 X
Qawv

VLWL OOOOOOQOQOO0O

—m-—-—na-00O0O0ONNMO®
QOOOQOMOQOQOQO00O0
gdé;géddéédngé
Fr NN, e, e TNN
MO-~gMeTTeTN—aOT
©00000R00000000
ém—dgé—ddddéooo

COOCQUOMMMMMIN=-00Q

VIV 2Z L mm
COCOCXEIITIIIIIX

QO~0QQO0O0QOQ0oO00
CQO0QQ=====Q0000
[+X-RoRoNoRoRoNoNoNoNoNoloNoNa)
QOO0 rr=m=Q0~=~-
COO0OQOEUQCOOe~0000
00000 QQCOL~==000
QCQO0QO0OCOO~0000
-~ 00Q0QOO00O0OO~00
~QQ0O="==0==00~00
CCQOO=-00000OO000
Ll adl ol e B L B ad o ol I o

TTCT PPV

1

336

386 8600 440
t3 J PY JUPYIOO 8613 1571 8645 1591

480 8607 S41
189 8638 246

4 F 20 FZ0O040 8615 212 8699 261
700 8706 73S

11 J NM JNMBOO 8602 606 8606 679

F 20 FZ0010 8587
F 20 FZ0O020 8601

F 20 FZ0030 8634
7 J FU JFUO20 8600 604 8706 640

S J FE JUFERBO 8596 280 8707 305
6 J FU JEUO1O 8600 868 8706 906
8 J FU JFUO30 8600 675 8706 710
9 J FU JFUO40 8600 901 8706 937

t
2
3
15 J PY JPY300 8613 587 8645 59

12 U NM JNMB20O 8606 302 8607
14 J PY JPY200 8613 641 8645 658

10 J FU JFUOS0 8601

~-xom
ITx
ITx

G G
12

Ix
- - 4
Ix
Ix
Ix
ITx

ECPFFFFFFCP
6 EF 123456FG

~—NOTHNO~RON

PROGRAM INFORMATION FILE

Ixco™

ITxmoey
ITaa-

-]

- -
Ix<wn

ITxaw

Ta<<n
ITxxon
Ix<~

Q <«
200X
-2

VoA >
XCZO~0
[- VIV - 4

X €D

VO <<=«
NE =
Nw~a

NQX -

QT d=Zw
V=V
-~-eZ O

W JdOO

PRC Y- g T

Ve dOO

N Qg w

axZxo~Q

N> oo
ZT«V0CX

-N -

.9woQ
0‘5!(3

= Q00
Q000

o B N
TIXTX

[~XeReRoRoN-NeoNoNoloNoNoNeoReNa)
e eReNoRoReRogo Roje oo RoNoNo)
O(DO(DOCDO<30(30<DO<DC
‘D'NN"'FQQ'QN?\Q

Q000CVLLVVNOCOOO
N=-=-N0OO00O0C=~~~
00000000 NVNOOOO
TOeTT~00NNND ==~
©O-0-00VWVO0000000

0"""¢D°¢DO<DO<DO<DO

- - .-

31!8:!3:!8:!8:!3:[!:!3
e NN NN ™ === - -
Q0000000000000 Q
QOO0 COCCO0O0O00Q0O0O0
COO00O0O00QO000QQQ
~QOCO0=~Q0=-0000000Q
CO000QOQ - === QO~~
OC0QO000==QO0000Q0
Q- ==0=00000000
CO0O00O==0 Q00000
O-Q000 =0 = w=0
0000000000 QQQQQ

Y em e r e e YR en e en Y e

TeTvITVYeTrTeVeTOwTVwTwTYTY

345

16 J PY JUPYA00 B613 790 8645 798
17 J YB JYBNOO 8645 961 8651 1036
19 o YB JYBN20 8649 277 8652 2334
20 J VYB JYBN30O B649 363 8653 426
$29

22 J ZX JZXA20 BE58 625 B684 820
J ZX JZXCtO 8659 686 8705 717

25 J IX JZXC20 8659 2381t 8705 2394
26 J ZIX JZIXC30 8659 716 8705 762

18 J ¥YB JYBNIO B649 289 8651
23 J ZX J2XxB10 8650 4650 8665 4720

21 J 2ZX JZXA10 B659 415 BE84

27 J IZX JZXD10 8634 830 8645 840
28 J IX JIxD20 8633 823 8647 839
29 J ZX JZxD30 8638 983 8648 1009
30 J 2X JZXD40O 8633 97t 8650 997

24

H

R
EECPFFFFFF
56 EF t2345¢6

€
4

T

H
R
€
3

T xwwN
Txw~
|-
¥xXoo
ITxaw
Txzow
Ixzow
Txzanm
Txao~
Ixa~-
aQ
X0Q
TxOow
Txow
ITxoe
Txom
Txown
XU~
- %)
XO@
T xoW
Taxow

Ixaow

Caw

PROGRAM INFORMATION FILE

Icaw
Taxom

Txao
Ixo~-

ax
X O0<
IxXx<w

Ix <

Ixxg<w

Ixa™

Txao
ITx«—

a «
Z2xa0X
L TN -

ooa >
X«<ZOo~0
W w2
P U)
[SN-~-% B 1
N =N
N o Q.

(L N-N- ¥
QZI=Zw
B«<~-0OX
-t ZQ

we=Jd0w

Q-

Ve dOO

Vs odrw

LxXO=Q

V>N Q
T«20O0X

cown

T ®
NS

Q000
0000

MI OO 6 O

VOO

COQOTCNNNNMMOMNNNN
QOQONNN=VNETMOTO Y
OONFOOOQOOOOOOO
G---eavistsosge
VRN -00000000Q0O0
QoooOmMNN—TTNNN- =
[«N" N B NeNoNeNoNoNoRoRoNoNe Na)
D D

CO0OO00CO0QOQQOO0O000
Q0000000 =~=w=we—

;§§§am¢:mcnococc
N mqIMM -
Q0000000000 QO00O
CO000QOO0QOO000O0CQ
QOOO00O0QO~=0000QO0
[« XoReNoRoRNoNoNola oo NoRe ol
== Q000000QOQO0QO
QOOOQ0O0OQOO0QCO0O000O
QOO0 =0==0Q0O0Q000O
QOQO==+~~000000Q
~QO0Q====0QOQ0C000O
COQO0O0CO0O00QOOO00

LR I I R I T

TCCTTITICLITTITIDTTT
ws@wOnn—ocngvmc
~-ORONMTIVNQDNWN
NSO~ OO-TNOO
- - - -

OSSmnnnnwmmmmam
ROV OOOYOY VYO
DDV DIIOIDNDID
vnmnoagmuaoo-uc
CMTDDOIACNNON ==~
-0~ OA~ODON =MD P
- - -

-_—nme - e e W e
vmo@gssgooooooo
POVOLOVPUVOVDOYWOYWOLOW
CODDDNDDBIDIVOIDODD
000080800000000
- EmeNQ=Q* =N~ R=O
WIITOVNMeTQQOOQQ=~
XXXXOOUVOVAIQROLIQAS
NNNNQQOQQQQQLQCaQ
VOVVANANANVANNV N
XXxXXQOQVALAQARD
NNNNQGSGOGG%OEQ
WVDOADVNNNNNNANNVLWN
"N TNOBNO"NM TN
LR G LR R KR X R

xXO0Oo
T xOW
Txown
Ixo=
Txom
TxOw
TxAa-

K
C
F

P
234 S6EF 12 3 456

5022 501

PROGRAM INFORMATION FItE

ITxaw
Txaw

ITxaovw
Taxo™

Ix
ITx

Ix
T

56 A8

Ix
ITx

I
Tx

AA AA AACP BB

12 34

Ixa U0
[S WV N-]
Laoan>

[X & ¥-E XN
wWwwLsZx
X dd
VAL«
VR =
N o= aQ
nor
QT =T w
VL=V
—-~tZO
= dOO

SN -N &R

Nie 400

VN0 C=w

LaxQO=Qa

N>»>nNwa
T«eO0QX

[N X

Q0= Q0Q00QC0O0
c,eROVWQTAOWNO
N e -

'OO:OQFOOOQO
QAN NTQw -
~N ~N -

QO NQMOOOO00
OO0V NQOWONQOQO

60 0 0 00

€V e NV L LTI
NNTOOQUVWOOOQ0OWwO
NN 000 =~0C00ON=-0OM
MOO0QC=0TQMOMNOONVY

NN ™ o~ ™~ <

12

NNBGOMONOQOOOO~ N
nawgmw8o0000009

000000V 00O~TOON
~--mOoO0Q-O0-0OTON

000X TL400JXYXX«CTIT O
ENNOOONTTINN =N
CQO0Q0OO0OCO000QO0O00Q
QQCO~0000O0Q0O0QO~0
QQOO00000000QO00
QQOOQ0O0O0000Q0000O0C
QO0OO0O00CQ0O000000
[sReRoRoNoRoR-RoRoNoloNoRo R glo)
QO0O=000000000O~0O
CO0Q=»=Q==0~-000C
CO="=00Q000~Q~=0
OC0000O0O0OO0O000QeC

B R R I A IR R

LA A A A B A A A A A A B A A 4

SOMP TV ND N
NOQ=NOVNONCANT TN
TNTTONNN~TOIRAINDO
EEeADODNNOOONST
BAAANNNNNAINNNNOO
OO WMM ettt @ S
'E XX EEEEENR RN NN-X.
BN OO~ NN~-
VAN T-~NMm~eONA~
MENOOIOMPTO~NOCON

- N o - - -
- NN NNNNNTNM
QOO AVVVRARIDBNIDW
QU VULV VIDNY
DOV DDIDVNDXDODD
008000000080000
NEO=NNTNINQ ===
--mgoggunupngoo
gog < JEIIITITN

Q808 aQaecaaQIl
AV NANNNDANANN
QQAQTIAIVILAQ ~
OOSOQQQQOOQO%%I
DXV N XV RNV RV R XY RV RV RV NV NV N,
OrDNO =N TNORDNO
TTETCTNODHDOVOONNNOY

Xoo
IxCw
Txswn
IxVw
Txon
Txown
ITxgo~-

[-S&]

T xw®
I xwin
Ixuww
T Xw®

T XuwN
TZzw~
QW

ITxwig
Txwwn

Taxwwe
ITxwm

Txwn
Taxw
-

ITxaow
ITxaowm

ITxow
ITxom

T xonN
Txo-~-
- =]

Tx0Q
Txouw
Txow
ZTxOo™

TaeoN
ITxo~-
- &

Qv

SN
QO
Q0O
O Q
QO
QQ
B K 4
-
FQOoQ - - - -00
QOO0 -+ - 00
B Y : BEETSE Y, |
- <
'EQM~~-‘OO
.gﬂo‘...go
QW - - - Q00
L0000 - - - O~
XL X -0

cQQNO - Q0O
QO mMO - 000
rMmMOO~ - - OWO

~ ~

rONQIn - Q0WwO
'OQOQ"MOQ

rOQNQO - Q000
cQOMO - :QONDO

(=T NN 4 TPV

TNTQOONONMO
T eQQO0QQ00Q0
OV TTOOONM

~Nn o [t

‘omoooccomN
- LE-T-Y-T- X

0= Q0QQO0000
A= - IN

ot OO k2

QOO NOQQOOM
QOO -~NO~00
QQQQQuww N
none ™~ [x]
~DONO:¢00Q
FNPOQ0ONVOO
™~ - o~

~0=0r=MmO0O
O, OMTO=—-

VOOWXYXXXUOJ
NTQeVWWOO

213

PROGRAM INFORMATION FILE

«
Tx«x
Tax«
I«

Ix
ITx

A A

2w
Qoo >
- X & H-R N1
TwwIZX
X €D
CoA -«
U NN,]
No=Q

no -

Q2 um=mZTw
me~OX
—~-et2QO
weed QO

= Q- w

N J0Q

N=-0 C-w

e xXZO=Q

VT>nNuo
} £ SrESN-F |

oaw

cNOQ To-w [wNeloNo)

P OONNOOOOQ
-05::}9n<00<30<90

Q00O =--000Q0C0
bt [=NeRoR R R A XNl

- 0 QD e U e b D
NNANN=TQQOQ===00Q0CCO0
e, 00000 """ 0vw
PTONONNOO0ON @ W0

- N N w

~-N=-NQ-QOOO0OM
ne!ucvo<30<3o<3g

[F- 2]
T <O
o~

NN=NQUNWQOOO -~
NNN=-~qOeTeR

QO
Nm o™

11 19 6 18

VOUOWWIXT«C«<«<<IIIII
m—_EmeeEfINNOINNTOOOOM
QO0QO00000QCO00O=0QO
QO0QO~QO00CO0Q0Q0CO00
O00QO0QOOQOOQOO
[sX=N-NoNoRoRo NoRoloNoRoleNoRe)
CO00000O00O0OO0CO
QOQ00COQOQ0O0QO00OOO
CCO0O==QC0QO0~0~0
00O0QO=~ Qv ==~=+=000
COQ0O==~00Q=»~=0~
[-ReNeRoNeoloRoRoRoNoNoNeNaNeNe

e e e e s o e o -

LA A A 2 2 2 B A & 2 A J

4
4
4

182
476
792
188

137 8704
304 8677 388
197 8615

61 S HZ SHZO30 B663 534 8704 640
65 S 1G SIGI00 8582 656 8592 870
66 S 0OC SOCO10 8670 1744 B677 1660
67 S OC S0CO020 86714

68 S OK SOKO10 8628 2386 8638 2517
69 S OK SOKO20 8628 1338 8638 1610
70 $ OK SOKO30 8628 9390 8638 1060
71 S PK SPK110 8603 1874 8615 1843
72 S PK SPK120 8603 1706 8615 1761
73 S PK SPK130 8603 1997 8615 1996
74 S PK SPK160 8603

79 S QL SQL 100 8620 1566 8635 1928

62 S HZ SH2050 8663
64 S HZ SHZO090 8663 671 B704

63 S HZ SH2070 8663 436 B704

ITxd®
Txdw
Ix0w
ITagoom
ITaxQown
TxI -

ITxow

ITxu
TxQ

34

ITx0

2

ITxo

Qe
x0o
ITxmw

caown

- Q

-0

]

- Q

- Q

- Q

-0

=
- Q coN CQOoCOQ
(-] ‘@ [«ReRoNe N0l
i - Qewand
- Q X' oQcooc¢C
- Q By [eNNoNoR 4
- Q o~ (Y =NeNolo]
-0 ‘N - 0000

~
(&) -] 2QOQ Q-
Q0O NNNOQOODO
CNQOQO =N NQOON
5333585330 Rze

214

PROGRAM INFORMATION FILE

Ixaw

p-- 3--R 4
ITxaom

ITxow™
Txm-
aax
X0«

Txaw
ITxzaw

Txa™
Tx<~

Q<
LxaTx
2w

voa>>

[X & -3 N-
[- Ry 4
X
Co <« =«
NI ==
N =~ Q
noxe
OZ2d=mZw
[NI
- 20
a0

e o Q€ =W

Ve JOo

N=Q €~ w

LAXO=Q

N>NVa
& S-NEN-F 1

Sawn

0000 C©QOo0Ow
KK X :~qcamr~ﬂ
Q000 wwooQo
MNNN Q0000

0.0 0.0

Q000 ‘w0000 0

QOO0 ' ~QO0000 o
=m0 000000 + - -0
=]

QO00QQ00Q0000QQ00

QV?QNOQ@"QQ@MON
N NN

Oounovo-wn«0v<rma
QNN"QN’

QQ0Q0COWOWOO0Q0Q0
Otbo-vcnhuantnneno<c-

00QQ0CQONWO000000
) O(DCDC)O " n N o - @ o~

OtDOtDO()O(?O(DO<>O<DO
O(DO‘DO(*O(?O‘DO(DMC‘O
-"'£:g<30<30<30<30<30

VOUUVQWUIXXXYXXDOO0
MO "TOATINN==N
0000000000000 00
000~ 00*0=0===00
0000000000000 00
0000000000000 00
00000000000 0000
0000 mwmmewe==00
00000"======000
00000 r======000
VB PR G YR GR GB PR TR N WS VR o Yr Vv
000000000000 ~00

R R ekl Rl

A A A A A A B AL 2 b 4 2 2 4

792
655

81 T CO TCOBOO 8507 2869 8701 2933

82 T CO TCOB10 8521 1539 8701 1549
386

84 T CO TCOD20 8528 3783 8701 3758
845

86 T CO TCOD40 8528 3393 B701 3384
972

435 8599 4914
440 8713 $S09

77 S RH SRHO20 8586 399 8599 453
717 8694

76 S RH SRHO1O 8586

78 S RH SRHO30 8586 295 8599 404
79 § VE SVEO10 8582 851 8594

80 S WN SWNOIO 8593 552 8609

83 ¥ CO TCOD1O 8528 385 B0}

85 T CO TCODJO 8528 842 8701

87 T CO TCODSO 8528 1099 8701 1123
88 T EC TEC100 8606

89 T KV TKVIO0O 8577 542 B713 648
90 ¥ KV TKV110 8577

XOO0
ITxoe
Txown

TxOow
Txom™
ITxOUN
Taxo-~-
oo

X O W
T Xt
Txuw
Txuw
Ixum
TN
rTxu -
a W

Txwe
Txww
ITxwe
Txwm
TN
T X~
o w
XxX0a
ITxaw

ITxaw

Icow

Txgom

T Qo

ITxa~-
ag
X900
IxO®

ITxown

Txwe
Txeom

T O
TxO-
a0
xX0Om
Txav

2 00 0000010

- - - - NDVYOLOVWOLY [~]
e~ ;KDC>°<DO Qo
VSN0 =~aMTNYNONO
SN~ DDDN

PROGRAM INFORMATYION FILE

Ix«<w

Tx<m

ITxan

Ix«~-
o«
ZxXxe T X
-2
Loa >
X«ZQ—=0
0w aZx
X«
COoOK =«
B o =N
No= O
NOXM
QZd~=2w
.- 3 oS B o

—~-<2ZS

WL Q0

Yo~ QK

Ve JdQ0

NrFQC~w

SxXO~0

M>N0Q
V00X

Qawn

OGOQQ:OOOOOOOOO

oonmmoouﬂﬂNONNN
oe-vaOOannw-——

901"000000009000
NOOOOO%OOOOQOOO
[oNeNoRoReReNeRoNoNe oo ol oRe]
CNACEZZTJOO0TVYUOLLOQ
tMEe—~—NNTTTTNNNT
CQCQCOO00>==Q0C ==~
O==000000O0O00O00O00O0
[~ RN NoNoR di ol ool il ol o
Q==000~=Q=0~000Q0Q
~QQQO0QOQQOOOOQ0
badiadi ol = Rk dh i ol o o
O= 0000 =" o rerww=-
hadhadiodl > Nolo Rl ol odi ol ol el

C0QOUOO0OOQOOOO0C0

e e e e e e e e en e e W e e

TTTTTTITTCTCTCYTTC
VNODRANADN=UININN
AU~ OMITN"LONQAS"ND
QUM N="FPOAMO~YNT
-mMm MO oo
N> = QPTTYITITTTLT
MOQOQOOOOQOO00000Q
LS
VODVODNRDRDIODOND
QrAOYMOTNANIONN
ANOUANDNNDT ==~
NOIANST=NRAIONO~ON T
M PR R RS
O@—FFFSQID@DU\DW"
TAARAEEONMBNNN VY
QURDBVVLBVVLOLBVLVYOWY
VIV DNDVDDDDIDD
[} QO0OQROQROQO0QC
HggchS'S’S‘Nﬂ'
wOCORERN==NONMMTeTT
Qo e NANNNANRNNNNNNN
 ¥-N-E-N-N-E-N-N-N-N-N-N-N-N-]
L e A - S e
Qe NNNANNNANNNNNN
 §-R-N-N-N-N-N-N-¥-N-N-R-NN-]
o S N
-Nnvmwhemg-ﬂnvm
RO NAAINNIO0Q00QC

Txawn
Ixao-~-
as

X000

ITxove

ITxuw

Taxuw

Txom

TxonN
ITxo-
au

X0Om©

TxaoW

Tcown

Ixaw

Icam

Taea~

Ixo~
o m

X0«

Ix«<yw

T xaw

Qv

9 ® 000000000
o~ QOOQCOQCQ0OQ
© -0 - - 00000 CO00OQ
P] ~2222xxxZ
Qvw= -+ " NOVWUOTTTYT
©oco Qo0o0owWCOoOO0OO
ogo C2IQ0®@0000
NQO - - -OQWMYOWCOOD
R []
000 QO0OwQo00O00O0OC
o;o Q=M mMmO00C0C0
©o0oc = ©CoCCoQCQmaam
Qoo nmvwwoooﬂ
[t} Mo~ .
CQCO - - -000Q0QO00OOC
QOO -+ - :CO0O0O0QQCQOO
[T & B | X od od od o ol
Qs - ‘" TTMTOINIMOOOO

000 @00C00Q0O00O0O0

°°N o.-q;.-.-'-—oo
9ow Q0090900029
20w g_v_:;moogo-
MO - - 000000 QO00O N
QC¢C e~ @O S~
03; voooooernww
OQN-~O;OOOOOOOO
000 - ‘OO0 VOVOCOC
w0 D e e o

QU TTTIINNNNNNNN
900®800000000009
CQOrRTORQOOCOQCO

0000000000 C0O0Q0O0
OwONwOOQOOOnvNN

105"

—Nnvmwhemg-wnv
PANNDANNNOQCOQ

PROGRAM INFORMATION FILE

xX0Q

ITxCo®

Ixown
Ixow
ITacom
IxON
IO~

e Qo
X O w
Ixww
Iy
Icew
ITxum
T xwy
Txuww-

au

X w

Txww
ITxwn
ITxwe
ITxwm

Taxwon

Txwe
aw

XOo0

Txaw

IxQw

TxQw

Txzom

cawn

0O 50 0 S 0 4 0 O 0 0 3 2 0 O O O 36 B O

1

0.0 0.0 O v O o O

46.0

0.0

Q=0
DO WO
(=X N

. -°N°

Q000
Q00
QOO0

- Q00
222

0O 6 NO 772 00 0 0.0

MNNIOOQCU
;QOONOOOO

@ 9090000090

@ -~-0000nNMm -«
~ []

Q- 'EOOOOOOOO

® . .9000090009

w gooooodod

~
-}

TOOCINQoNAT
cnmmmmmggggg

105

217

e s i | i el ©

PROGRAM INFORMATION FILE

Txaown

Ixcow

Icam
Txmeoy

ITxao~
-}
X0«
Txaw

ITx<n

Ix«<

ITxa<m

Tax<

Ixa~
[-SK
220X
-
Laa >
X«Za =3
X wwadZx
b B]
VAL
N =0
N = Q
NOE™
QZdmZw
D~ OX
2O

w=~J0Q

e e O =W

Ve 0Q

Vi O =W

LEO =

nN>nuaQ
T«DOOX

cQawn

Q O O Qo QQocC O(OCDCJQ o
YY) m) ow O o @ O ﬂ a@ 0

..

N> =0~ 000CM™ w it Q0o

~ ~e~m cf~r-r-U)o 040 o o
NHOND o~~~ w Q o<:r:m

CQOC0O0QOOCO0W Q00
[SE-R-NoRoRoRoRoRoNoRoRoNoNo N

e ey n e ot e 2 QDT
NANNNOITINNNQOTOYWY
(e~ NeoRoNoNoNeoNoNoNeNoXo] N e

oooomoooooooooo
O<DO<DB"OtDw(:m<ng-wh

0<DQ<DO<:O¢DO<DO<DO|nc
©oooscao O<O<D<>C>C>N -
Ncu«:vﬂt\ncv«<ao<30<>o
-000080c00no0 m o o

[~X-NeN-NoRNe) OtD()u’g [~ X=Xl

OC0O0OQO00O000000
L ECRCRURCRLELECNC N Xo B 3 3)
CTETITTTIINTNONNON
e recnrem Q0= =00
COCOOQOO00O0O00=~w-
TEEEmeme=2Q0~=000
0OV QOQQoCOo~00C0
[SR-R-R-Re N R N-R-N-K-¥-N- No¥o)

el ol ol ol el ol R X IR R
Rl ol ol R i I I - R
e er e~~~ 00-000
L R ek R
©00000000000QCO

VS GS et m Y m e E e v wm e e e

A A A A A B A B A K K B B J

191
782 4

157 8704
116 T QF TQFLOO 8577 1463 8663 1454

1041 8714 1248

106 T 02 TOZ460 8551 1476 B704 1497
107 T 02 Y02470 8551 1438 8704 1431
108 T 0Z 702480 8551 1453 B704 1433
109 T 0Z T0Z490 8551 1872 8704 1923
110 T 0Z 702500 8551 1490 8704 1557
111 7 02 102510 8551 1895 8704 1887
112 T.02 702520 8551 1551 8704 1540
113 T 0Z T0Z530 8551 1404 8704 1075
114 T 0Z Y0Z540 8556 1787 8704 1754
117 T WE TWEB70 8563 4147 8726 4849
118 T WE TWEBBO 8551 2145 8726 2592
119 T WE TWED20 8551

120 T WE TWEE10 8570 673 8714

115 T 0Z 702990 8577

TxQw

Txawn
IxQw
ITxxao™
TxQon
TxQo~-
e
X000
Taxow

oW

H

ITxvew

xom

H

ITxown
Ixo~

[S
XVa

Ixaw

Cxown

ROOGOODI100

- e o)
L] 0 v © O O Ow L]
Q o 010 N O C
O O O C’O O w Q L]
O @ bt N-me-00

C000QOoO0O0O0
[X=-N-N-N-K-N-N-N)
[~N-R-N-N-N-N-N-No}
[SX-N-N-No NN NoNe)
222222222
vSeewYvTITeTe
[~R-R-N-NeoNoNoN-F]

[R-N-N-NeNo N0l M =]

QOO0 MOoON=n
MEOIOMOONM O

IR

COO0QOOO00
CReR-NeNogoNoNoNo
- wd wd wd ol -l b d
LR B B I Nl I]
SR O O o O o
~--=0000-

g5889z02s

108

100 0 00

JOO 000 8 03

116 T1.OONO O

115 6.2 3
147 89.0 6

218

PROGRAM INFORMATION FILE

Txo®™

Txx
ITxo

2

1

a
x0

Ix«

5 6 A B

Ix«

Tx«w

ITxam

2

I«

Tx«~-

& <
200X
-z wx
VoA >
x<«<ZO0~0
EwwsJZT®
XL
VO« «
" TN N7}
N o= Q.
nNoxr
O2d=2Zw
N<=OI
-“<ZQ

w - J0oQ

PN~ & 2]

N dOQ

N QW

axO=Q

N>N0Qa
I & Sr-N3N-N 4

cSawn

Q0 r0CcC0OoO~-

[« NN Ne Ne NeleNo)
00 000 b (=N}

-] VCOUIQA I

TvvweTTTONY
2 g oOmaseTeN
BIevee-g3~
(=X NeNoNeNoNeoNoNoNo]
NMN-OONT Y-
QOO WVOOQW
0V -"OMQOuVO
me -

CQO0QQ00Q000MW
896866-000
CQOO0OO0OQCwmaawn
LE K & & & SNy 4
NN=TOMONOTN~-
O~=00000Q00
—-memewe=-0000
~0000~-~000QO0

~00Q0O0QOOO
C000QOQO~=-0

crre=-0~-0
~rse-=--000-~-
0-00000000
Qe r—==~0
0000000000
e gn b g B PR YD T Pm

tTeTYTvwTTITTOY

o
]
7
5
73%
8
0
8
3

127 Y KD QKDP70 8658 236 8705 25
128 Y YK EDIT/U 8676 626 8705

72
69

121 8634

121 T WE TWEGGO 8563 3879 8714 4219
122 T WE TWER40 8528 4354 8726 424

123 T WE TWE100 8563 917 8617 85

124 T WL TWL1SO 8570 323 8733 &3

125 T WL TWL200 8563 666 8733 73

126 T WL TWL260 8605 580 8733

129 ¥ YK REPORT 8683 525 8705 41t

130 8 MT HMT 130 8632

HHHHHAN

RRRRRRK
CPFFFFFFC
EF 123456fF

Icx
Tx
ITx
ITxwm
T xwwN
Txw
o w
xova
IxQ®
Txowv
Taxaow

EEE
456

- Txeam

ITxan
Ixa-~-
aa
X000
Txow®

Ixow

Icxuw
TxOom
TxOoN
Txexo~-
aw
xoa
Txaw

Txown

Tanew

oaw

O w

o

122 O

121

1100H0600000

00 -
oM - w
-

oe o
TN -
o0 -
0 w»
Q0 -0
Tw
[oN-N-R
ozo-
*0Qw
DOON

1

129

219

130

VIiTa

Major John Diego Fernandez, U.S. Air Force, was born on 13
August 1947, in Corpus Ch;isti, Texas, the son of Mr. and Mrs. Fidel
F. Fernandez. He attended Texas A&I University and received a B.A.
degree in Mathematics in 1968. Prior to entering the Air Force, he
was employed as a mathematician-statistician at Kelly AFB, San
Antonio, Texas. Major Fernandez received his military commission in
May 1969 and has served in various capacities since then. He began
his career as a Communications-Electronics Maintenance Officer and
after receiving his M.S.E. degree in Industrial Engineering from West
Virginia University he commenced working in the computer field.
While assigned to the Pentagon, Major Fernandez served as programmer
and systems analyst in support of the Joint Chiefs of Staff. He was
subsequently assigned overseas as an Exchange Officer with the
Venezuelan Air Force where he served in the capacity of Chief,
Systems Analysis Division. His last assignment was with the San
Antonio Data Services Center where he worked as a Telecommunications
Specialist and Chief, Customer Assistance Division. His decorations
include the Meritorious Service Medal with two Oak Leaf Clusters, the
Joint Service Commendation Medal and the Venezuelan Air Force
Commendation Medal. He is a member of Alpha Pi Mu, Upsilon Pi
Epsilon, the Computer Society of 1IEEE, and ACM. His permanent

address is: 906 Nineteenth Street, Corpus Christi, Texas, 77840.

220

